2,884 research outputs found
Local transient rheological behavior of concentrated suspensions
This paper reports experiments on the shear transient response of
concentrated non-Brownian suspensions. The shear viscosity of the suspensions
is measured using a wide-gap Couette rheometer equipped with a Particle Image
Velocimetry (PIV) device that allows measuring the velocity field. The
suspensions made of PMMA particles (31m in diameter) suspended in a
Newtonian index- and density-matched liquid are transparent enough to allow an
accurate measurement of the local velocity for particle concentrations as high
as 50%. In the wide-gap Couette cell, the shear induced particle migration is
evidenced by the measurement of the time evolution of the flow profile. A
peculiar radial zone in the gap is identified where the viscosity remains
constant. At this special location, the local particle volume fraction is taken
to be the mean particle concentration. The local shear transient response of
the suspensions when the shear flow is reversed is measured at this point where
the particle volume fraction is well defined. The local rheological
measurements presented here confirm the macroscopic measurements of
Gadala-Maria and Acrivos (1980). After shear reversal, the viscosity undergoes
a step-like reduction, decreases slower and passes through a minimum before
increasing again to reach a plateau. Upon varying the particle concentration,
we have been able to show that the minimum and the plateau viscosities do not
obey the same scaling law with respect to the particle volume fraction. These
experimental results are consistent with the scaling predicted by Mills and
Snabre (2009) and with the results of numerical simulation performed on random
suspensions [Sierou and Brady (2001)]. The minimum seems to be associated with
the viscosity of an isotropic suspension, or at least of a suspension whose
particles do not interact through non-hydrodynamic forces, while the plateau
value would correspond to the viscosity of a suspension structured by the shear
where the non-hydrodynamic forces play a crucial role
Determination of copper in embryos and very young specimens of <i>Sepia officinalis</i>
The total amount of copper in embryos and newly hatched young individuals of Sepia officinalis L. has been determined by microtechnique, using bathocuproine-sulfonate as complexing reagent. During embryonic life, the total amount of copper does not change; it remains at a level close to 3.8 ”g. The copper is found in the yolk sac of very early embryos; it is subsequently transferred into the embryo proper. After hatching, the copper content diminishes quickly in starved individuals. Fed S. officinalis also usually lose copper. The reason for this may be that the inner yolk sac of newly hatched individuals contains a great deal of the total copper, which is excreted with the yolk after the latter has become superfluous. Later on, copper must be taken up from the food. The mobilization of protein and copper from the yolk into the blood may account for the early appearance of embryonic hemocyanin in the blood
Diversification of myco-heterotrophic angiosperms: evidence from Burmanniaceae.
Background - Myco-heterotrophy evolved independently several times during angiosperm evolution. Although many species of myco-heterotrophic plants are highly endemic and long-distance dispersal seems unlikely, some genera are widely dispersed and have pantropical distributions, often with large disjunctions. Traditionally this has been interpreted as evidence for an old age of these taxa. However, due to their scarcity and highly reduced plastid genomes our understanding about the evolutionary histories of the angiosperm myco-heterotrophic groups is poor. Results - We provide a hypothesis for the diversification of the myco-heterotrophic family Burmanniaceae. Phylogenetic inference, combined with biogeographical analyses, molecular divergence time estimates, and diversification analyses suggest that Burmanniaceae originated in West Gondwana and started to diversify during the Late Cretaceous. Diversification and migration of the species-rich pantropical genera Burmannia and Gymnosiphon display congruent patterns. Diversification began during the Eocene, when global temperatures peaked and tropical forests occurred at low latitudes. Simultaneous migration from the New to the Old World in Burmannia and Gymnosiphon occurred via boreotropical migration routes. Subsequent Oligocene cooling and breakup of boreotropical flora ended New-Old World migration and caused a gradual decrease in diversification rate in Burmanniaceae. Conclusion - Our results indicate that extant diversity and pantropical distribution of myco-heterotrophic Burmanniaceae is the result of diversification and boreotropical migration during the Eocene when tropical rain forest expanded dramaticall
The Ly-alpha profile and center-to-limb variation of the quiet Sun
We study the emission of the hydrogen Lyman-a line in the quiet Sun, its
center-to-limb variation (CLV), and its radiance distribution. We also compare
quasi-simultaneous Ly-a and Ly-b line profiles. We used the high spectral and
spatial resolution of the SUMER spectrometer and completed raster scans at
various locations along the disk. For the first time, we used a method to
reduce the incoming photon flux to a 20%-level by partly closing the aperture
door. We also performed a quasi-simultaneous observation of both Ly-a and Ly-b
at Sun center in sit-and-stare mode. We infer the flow characteristic in the
Ly-a map from variations in the calibrated 1206 Si III line centroids. We
present the average profile of Ly-a, its radiance distribution, its CLV
behaviour, and the signature of flows on the line profiles. Little CLV and no
limb brightening are observed in the profiles of the Ly-a line. In contrast to
all other lines of the Lyman series, which have a stronger red-horn, Ly-a has a
dominating blue-horn asymmetry. There appears to be a brightness-to-asymmetry
relationship. A similar and even clearer trend is observed in the
downflow-to-asymmetry relationship. This important result is consistent with
predictions from models that include flows. However, the absence of a clear CLV
in the profiles may be more indicative of an isotropic field than a radial
flow. It appears that the ubiquitous hydrogen behaves similar to a filter that
dampens all signatures of the line formation by processes in the chromosphere
and transition region.Comment: 4 pages, 4 figure
The Excitation of Extended Red Emission: New Constraints on its Carrier From HST Observations of NGC 7023
The carrier of the dust-associated photoluminescence process causing the
extended red emission (ERE) in many dusty interstellar environments remains
unidentified. Several competing models are more or less able to match the
observed broad, unstructured ERE band. We now constrain the character of the
ERE carrier further by determining the wavelengths of the radiation that
initiates the ERE. Using the imaging capabilities of the Hubble Space
Telescope, we have resolved the width of narrow ERE filaments appearing on the
surfaces of externally illuminated molecular clouds in the bright reflection
nebula NGC 7023 and compared them with the depth of penetration of radiation of
known wavelengths into the same cloud surfaces. We identify photons with
wavelengths shortward of 118 nm as the source of ERE initiation, not to be
confused with ERE excitation, however. There are strong indications from the
well-studied ERE in the Red Rectangle nebula and in the high-|b| Galactic
cirrus that the photon flux with wavelengths shortward of 118 nm is too small
to actually excite the observed ERE, even with 100% quantum efficiency. We
conclude, therefore, that ERE excitation results from a two-step process. While
none of the previously proposed ERE models can match these new constraints, we
note that under interstellar conditions most polycyclic aromatic hydrocarbon
(PAH) molecules are ionized to the di-cation stage by photons with E > 10.5 eV
and that the electronic energy level structure of PAH di-cations is consistent
with fluorescence in the wavelength band of the ERE. Therefore, PAH di-cations
deserve further study as potential carriers of the ERE. (abridged)Comment: Accepted for Publication in the Ap
SUMER: Solar Ultraviolet Measurements of Emitted Radiation
The SUMER (solar ultraviolet measurements of emitted radiation) experiment is described. It will study flows, turbulent motions, waves, temperatures and densities of the plasma in the upper atmosphere of the Sun. Structures and events associated with solar magnetic activity will be observed on various spatial and temporal scales. This will contribute to the understanding of coronal heating processes and the solar wind expansion. The instrument will take images of the Sun in EUV (extreme ultra violet) light with high resolution in space, wavelength and time. The spatial resolution and spectral resolving power of the instrument are described. Spectral shifts can be determined with subpixel accuracy. The wavelength range extends from 500 to 1600 angstroms. The integration time can be as short as one second. Line profiles, shifts and broadenings are studied. Ratios of temperature and density sensitive EUV emission lines are established
Phonons and Colossal Thermal Expansion Behavior of Ag3Co(CN)6 and Ag3Fe(CN)6
Recently colossal positive volume thermal expansion has been found in the
framework compounds Ag3Co(CN)6 and Ag3Fe(CN)6. Phonon spectra have been
measured using the inelastic neutron scattering technique as a function of
temperature and pressure. The data has been analyzed using ab-initio
calculations. We find that the bonding is very similar in both compounds. At
ambient pressure modes in the intermediate frequency part of the vibrational
spectra in the Co compound are shifted to slightly higher energies as compared
to the Fe compound. The temperature dependence of the phonon spectra gives
evidence for large explicit anharmonic contribution to the total anharmonicity
for low-energy modes below 5 meV. We found that modes are mainly affected by
the change in the size of unit cell, which in turn changes the bond lengths and
vibrational frequencies. Thermal expansion has been calculated via the volume
dependence of phonon spectra. Our analysis indicates that Ag phonon modes in
the energy range from 2 to 5 meV are strongly anharmonic and major contributors
to thermal expansion in both compounds. The application of pressure hardens the
low-energy part of the phonon spectra involving Ag vibrations and confirms the
highly anharmonic nature of these modes.Comment: 19 pages, 14 figures and one tabl
Near-Infrared Spectroscopy of Molecular Hydrogen Emission in Four Reflection Nebulae: NGC 1333, NGC 2023, NGC 2068, and NGC 7023
We present near-infrared spectroscopy of fluorescent molecular hydrogen (H_2)
emission from NGC 1333, NGC 2023, NGC 2068, and NGC 7023 and derive the
physical properties of the molecular material in these reflection nebulae. Our
observations of NGC 2023 and NGC 7023 and the physical parameters we derive for
these nebulae are in good agreement with previous studies. Both NGC 1333 and
NGC 2068 have no previously-published analysis of near-infrared spectra. Our
study reveals that the rotational-vibrational states of molecular hydrogen in
NGC 1333 are populated quite differently from NGC 2023 and NGC 7023. We
determine that the relatively weak UV field illuminating NGC 1333 is the
primary cause of the difference. Further, we find that the density of the
emitting material in NGC 1333 is of much lower density, with n ~ 10^2 - 10^4
cm^-3. NGC 2068 has molecular hydrogen line ratios more similar to those of NGC
7023 and NGC 2023. Our model fits to this nebula show that the bright,
H_2-emitting material may have a density as high as n ~ 10^5 cm^-3, similar to
what we find for NGC 2023 and NGC 7023. Our spectra of NGC 2023 and NGC 7023
show significant changes in both the near-infrared continuum and H_2 intensity
along the slit and offsets between the peaks of the H_2 and continuum emission.
We find that these brightness changes may correspond to real changes in the
density and temperatures of the emitting region, although uncertainties in the
total column of emitting material along a given line of sight complicates the
interpretation. The spatial difference in the peak of the H_2 and near-infrared
continuum peaks in NGC 2023 and NGC 7023 shows that the near-infrared continuum
is due to a material which can survive closer to the star than H_2 can.Comment: Submitted for publication in ApJ. 34 pages including 12 embedded
postscript figures. Also available at
http://www.astronomy.ohio-state.edu/~martini/pub
The flow of plasma in the solar terrestrial environment
The overall goal of our NASA Theory Program was to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, with the funding from this NASA program, we concentrated on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we developed unique global models that allowed us to study the coupling between the different regions. These results are highlighted in the next section. Another important aspect of our NASA Theory Program concerned the effect that localized 'structure' had on the macroscopic flow in the ionosphere, plasmasphere, thermosphere, and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkland current patterns) or time variations in these input due to storms and substorms. Also, some of the plasma flows that we predicted with our macroscopic models could be unstable, and another one of our goals was to examine the stability of our predicted flows. Because time-dependent, three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulations). Therefore, another goal of our NASA Theory Program was to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This could involve a detailed comparison of kinetic, semi-kinetic, and hydrodynamic predictions for a given polar wind scenario or it could involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations provides insight into when the various models can be used with confidence
- âŠ