226 research outputs found

    Craniometric corroboration of the specific status of Lepilemur septentrionalis, an endemic lemur from the north of Madagascar

    Full text link
    The disputed taxonomy of the genus Lepilemur I. Geoffroy, 1851 has been clarified considerably by cytogenetic techniques, especially analysis of karyotypes. An allopatric species of Lepilemur, L. septentrionalis, has been created recently on the basis of cytogenetic distinctions (Rumpler & Albignac, 1975). L. septentrionalis is shown here to be significantly smaller than the morphologically similar L. dorsalis in thirty-four of thirty-seven linear cranial dimensions, but significantly larger in interorbital breadth (lacrimale-lacrimale). Craniometric results therefore reinforce the cytogenetic conclusion that L. septentrionalis is a valid species distinct from L. dorsalis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/21740/1/0000133.pd

    ADAMTS metalloproteases generate active versican fragments that regulate interdigital web regression

    Get PDF
    SummaryWe show that combinatorial mouse alleles for the secreted metalloproteases Adamts5, Adamts20 (bt), and Adamts9 result in fully penetrant soft-tissue syndactyly. Interdigital webs in Adamts5−/−;bt/bt mice had reduced apoptosis and decreased cleavage of the proteoglycan versican; however, the BMP-FGF axis, which regulates interdigital apoptosis was unaffected. BMP4 induced apoptosis, but without concomitant versican proteolysis. Haploinsufficiency of either Vcan or Fbln1, a cofactor for versican processing by ADAMTS5, led to highly penetrant syndactyly in bt mice, suggesting that cleaved versican was essential for web regression. The local application of an aminoterminal versican fragment corresponding to ADAMTS-processed versican, induced cell death in Adamts5−/−;bt/bt webs. Thus, ADAMTS proteases cooperatively maintain versican proteolysis above a required threshold to create a permissive environment for apoptosis. The data highlight the developmental significance of proteolytic action on the ECM, not only as a clearance mechanism, but also as a means to generate bioactive versican fragments

    Craniometric Data Supports Demic Diffusion Model for the Spread of Agriculture into Europe

    Get PDF
    BACKGROUND:The spread of agriculture into Europe and the ancestry of the first European farmers have been subjects of debate and controversy among geneticists, archaeologists, linguists and anthropologists. Debates have centred on the extent to which the transition was associated with the active migration of people as opposed to the diffusion of cultural practices. Recent studies have shown that patterns of human cranial shape variation can be employed as a reliable proxy for the neutral genetic relationships of human populations. METHODOLOGY/PRINCIPAL FINDINGS:Here, we employ measurements of Mesolithic (hunter-gatherers) and Neolithic (farmers) crania from Southwest Asia and Europe to test several alternative population dispersal and hunter-farmer gene-flow models. We base our alternative hypothetical models on a null evolutionary model of isolation-by-geographic and temporal distance. Partial Mantel tests were used to assess the congruence between craniometric distance and each of the geographic model matrices, while controlling for temporal distance. Our results demonstrate that the craniometric data fit a model of continuous dispersal of people (and their genes) from Southwest Asia to Europe significantly better than a null model of cultural diffusion. CONCLUSIONS/SIGNIFICANCE:Therefore, this study does not support the assertion that farming in Europe solely involved the adoption of technologies and ideas from Southwest Asia by indigenous Mesolithic hunter-gatherers. Moreover, the results highlight the utility of craniometric data for assessing patterns of past population dispersal and gene flow

    Role of Nonbehavioral Factors in Adjusting Long Bone Diaphyseal Structure in Free-ranging Pan troglodytes

    Get PDF
    Limb bones deform during locomotion and can resist the deformations by adjusting their shapes. For example, a tubular-shaped diaphysis best resists variably-oriented deformations. As behavioral profiles change during adulthood, patterns of bone deformation may exhibit age trends. Habitat characteristics, e.g., annual rainfall, tree density, and elevation changes, may influence bone deformations by eliciting individual components of behavioral repertoires and suppressing others, or by influencing movements during particular components. Habituated chimpanzee communities provide a unique opportunity to examine these factors because of the availability of morphological data and behavioral observations from known-age individuals inhabiting natural habitats. We evaluated adult femora and humeri of 18 female and 10 male free-ranging chimpanzees (Pan troglodytes) from communities in Gombe (Tanzania), Mahale Mountains (Tanzania), and Taï Forest (Côte d’Ivoire) National Parks. We compare cross sections at several locations (35%, 50%, 65% diaphyseal lengths). Community comparisons highlight different diaphyseal shapes of Taï females relative to Mahale and Gombe females, particularly in humeral diaphyses. Age trends in diaphyseal shapes are consistent with reduced activity levels in general, not only reduced arboreal activity. Age-related bone loss is apparent among community females, but is less striking among males. Community trends in diaphyseal shape are qualitatively consistent with ranked annual rainfall at localities, tree density, and elevation change or ruggedness of terrain. Habitat characteristics may contribute to variation in diaphyseal shape among chimpanzee communities, much like among modern human groups, but verification awaits further rigorous experimental and comparative analyses

    Evidence for a Grooming Claw in a North American Adapiform Primate: Implications for Anthropoid Origins

    Get PDF
    Among fossil primates, the Eocene adapiforms have been suggested as the closest relatives of living anthropoids (monkeys, apes, and humans). Central to this argument is the form of the second pedal digit. Extant strepsirrhines and tarsiers possess a grooming claw on this digit, while most anthropoids have a nail. While controversial, the possible presence of a nail in certain European adapiforms has been considered evidence for anthropoid affinities. Skeletons preserved well enough to test this idea have been lacking for North American adapiforms. Here, we document and quantitatively analyze, for the first time, a dentally associated skeleton of Notharctus tenebrosus from the early Eocene of Wyoming that preserves the complete bones of digit II in semi-articulation. Utilizing twelve shape variables, we compare the distal phalanges of Notharctus tenebrosus to those of extant primates that bear nails (n = 21), tegulae (n = 4), and grooming claws (n = 10), and those of non-primates that bear claws (n = 7). Quantitative analyses demonstrate that Notharctus tenebrosus possessed a grooming claw with a surprisingly well-developed apical tuft on its second pedal digit. The presence of a wide apical tuft on the pedal digit II of Notharctus tenebrosus may reflect intermediate morphology between a typical grooming claw and a nail, which is consistent with the recent hypothesis that loss of a grooming claw occurred in a clade containing adapiforms (e.g. Darwinius masillae) and anthropoids. However, a cladistic analysis including newly documented morphologies and thorough representation of characters acknowledged to have states constituting strepsirrhine, haplorhine, and anthropoid synapomorphies groups Notharctus tenebrosus and Darwinius masillae with extant strepsirrhines rather than haplorhines suggesting that the form of pedal digit II reflects substantial homoplasy during the course of early primate evolution

    The Secreted Metalloprotease ADAMTS20 Is Required for Melanoblast Survival

    Get PDF
    ADAMTS20 (A disintegrin-like and metalloprotease domain with thrombospondin type-1 motifs) is a member of a family of secreted metalloproteases that can process a variety of extracellular matrix (ECM) components and secreted molecules. Adamts20 mutations in belted (bt) mice cause white spotting of the dorsal and ventral torso, indicative of defective neural crest (NC)-derived melanoblast development. The expression pattern of Adamts20 in dermal mesenchymal cells adjacent to migrating melanoblasts led us to initially propose that Adamts20 regulated melanoblast migration. However, using a Dct-LacZ transgene to track melanoblast development, we determined that melanoblasts were distributed normally in whole mount E12.5 bt/bt embryos, but were specifically reduced in the trunk of E13.5 bt/bt embryos due to a seven-fold higher rate of apoptosis. The melanoblast defect was exacerbated in newborn skin and embryos from bt/bt animals that were also haploinsufficient for Adamts9, a close homolog of Adamts20, indicating that these metalloproteases functionally overlap in melanoblast development. We identified two potential mechanisms by which Adamts20 may regulate melanoblast survival. First, skin explant cultures demonstrated that Adamts20 was required for melanoblasts to respond to soluble Kit ligand (sKitl). In support of this requirement, bt/bt;Kittm1Alf/+ and bt/bt;KitlSl/+ mice exhibited synergistically increased spotting. Second, ADAMTS20 cleaved the aggregating proteoglycan versican in vitro and was necessary for versican processing in vivo, raising the possibility that versican can participate in melanoblast development. These findings reveal previously unrecognized roles for Adamts proteases in cell survival and in mediating Kit signaling during melanoblast colonization of the skin. Our results have implications not only for understanding mechanisms of NC-derived melanoblast development but also provide insights on novel biological functions of secreted metalloproteases

    Comparing vibrissal morphology and infraorbital foramen area in pinnipeds

    Get PDF
    Pinniped vibrissae are well-adapted to sensing in an aquatic environment, by being morphologically diverse and more sensitive than those of terrestrial species. However, it is both challenging and time-consuming to measure vibrissal sensitivity in many species. In terrestrial species, the infraorbital foramen (IOF) area is associated with vibrissal sensitivity and increases with vibrissal number. While pinnipeds are thought to have large IOF areas, this has not yet been systematically measured before. We investigated vibrissal morphology, IOF area, and skull size in 16 species of pinniped and 12 terrestrial Carnivora species. Pinnipeds had significantly larger skulls and IOF areas, longer vibrissae, and fewer vibrissae than the other Carnivora species. IOF area and vibrissal number were correlated in Pinnipeds, just as they are in terrestrial mammals. However, despite pinnipeds having significantly fewer vibrissae than other Carnivora species, their IOF area was not smaller, which might be due to pinnipeds having vibrissae that are innervated more. We propose that investigating normalized IOF area per vibrissa will offer an alternative way to approximate gross individual vibrissal sensitivity in pinnipeds and other mammalian species. Our data show that many species of pinniped, and some species of felids, are likely to have strongly innervated individual vibrissae, since they have high values of normalized IOF area per vibrissa. We suggest that species that hunt moving prey items in the dark will have more sensitive and specialized vibrissae, especially as they have to integrate between individual vibrissal signals to calculate the direction of moving prey during hunting

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Influence of handaxe size and shape on cutting efficiency: a large-scale experiment and morphometric analysis

    Get PDF
    Handaxes represent one of the most temporally enduring and geographically widespread of Palaeolithic artifacts and thus comprised a key technological strategy of many hominin populations. Archaeologically observable variation in the size (i.e., mass) and shape properties of handaxes has been frequently noted. It is logical to ask whether some of this variability may have had functional implications. Here, we report the results of a large-scale (n = 500 handaxes) experiment designed to examine the influence of variation in handaxe size and shape on cutting efficiency rates during a laboratory task. We used a comprehensive dataset of morphometric (size-adjusted) shape variables and statistical methods (including multivariate methods) to address this issue. Our first set of analyses focused on handaxe mass/size variability. This analysis demonstrated that, at a broad-scale level of variation, handaxe mass may have been free to vary independently of functional (cutting) efficiency. Our analysis also, however, identified that there will be a task-specific threshold in terms of functional effectiveness at the lower end of handaxe mass variation. This implies that hominins may have targeted design forms to meet minimal (task-specific) thresholds, and may also have managed handaxe reduction and discard in respect to such factors. Our second set of analyses focused on handaxe shape variability. This analysis also indicated that considerable variation in handaxe shape may occur independently of any strong effect on cutting efficiency. We discuss how these results have several implications for considerations of handaxe variation in the archaeological record. At a general level, our results demonstrate that variability within and between handaxe assemblages in terms of their size and shape properties will not necessarily have had immediate or strong impact on their effectiveness when used for cutting, and that such variability may have been related to factors other than functional issues
    corecore