1,610 research outputs found

    Kinematics of massive star ejecta in the Milky Way as traced by 26^26Al

    Get PDF
    Context. Massive stars form in groups and their winds and supernova explosions create superbubbles up to kpc in size. The fate of their ejecta is of vital importance for the dynamics of the interstellar medium, for chemical evolution models, and the chemical enrichment of galactic halos and the intergalactic medium. However, ejecta kinematics and the characteristic scales in space and time have not been explored in great detail beyond ~10 Ka. Aims: Through measurement of radioactive 26Al with its decay time constant at ~106 years, we aim to trace the kinematics of cumulative massive-star and supernova ejecta independent of the uncertain gas parameters over million-year time scales. Our goal is to identify the mixing time scale and the spatio-kinematics of such ejecta from the pc to kpc scale in our Milky Way. Methods: We use the SPI spectrometer on the INTEGRAL observatory and its observations along the Galactic ridge to trace the detailed line shape systematics of the 1808.63 keV gamma-ray line from 26Al decay. We determine line centroids and compare these to Doppler shift expectations from large-scale systematic rotation around the Galaxy centre, as observed in other Galactic objects. Results: We measure the radial velocities of gas traced by 26Al, averaged over the line of sight, as a function of Galactic longitude. We find substantially higher velocities than expected from Galactic rotation, the average bulk velocity being ~200 km s-1 larger than predicted from Galactic rotation. The observed radial velocity spread implies a Doppler broadening of the gamma-ray line that is consistent with our measurements of the overall line width. We can reproduce the observed characteristics with 26Al sources located along the inner spiral arms, when we add a global blow-out preference into the forward direction away from arms into the inter-arm region, as is expected when massive stars are offset towards the spiral-arm leading edge. With the known connection of superbubbles to the gaseous halo, this implies angular-momentum transfer in the disk-halo system and consequently also radial gas flows. The structure of the interstellar gas above the disk affects how ionizing radiation may escape and ionize intergalactic gas.Peer reviewe

    Noise Impacts from Professional Dog Grooming Forced-Air Dryers

    Get PDF
    This study was designed to measure the sound output of four commonly used brands of forced-air dryers used by dog groomers in the United States. Many dog groomers have questions about the effect of this exposure on their hearing, as well as on the hearing of the dogs that are being groomed. Readings taken from each dryer at 1 meter (the likely distance of the dryer from the groomer and the dog) showed average levels ranging from 105.5 to 108.3 dB SPL or 94.8 to 108.0 dBA. Using the 90 dBA criterion required by the US Occupational Safety and Health Administration, dog groomers/bathers are at risk if exposure to the lowest intensity dryer (94.8 dBA) exceeds 4 hours per day. If the more stringent 85 dBA criterion and 3 dB tradeoff is applied, less than one hour of exposure is permissible in an 8 hour day. Cautions are recommended for any persons exposed to noise from forced-air dryers

    INTEGRAL/SPI Îł -ray line spectroscopy : Response and background characteristics

    Get PDF
    © 2018 ESO. Reproduced with permission from Astronomy & Astrophysics. Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.Context. The space based γ-ray observatory INTEGRAL of the European Space Agency (ESA) includes the spectrometer instrument "SPI". This is a coded mask telescope featuring a 19-element Germanium detector array for high-resolution γ-ray spectroscopy, encapsulated in a scintillation detector assembly that provides a veto for background from charged particles. In space, cosmic rays irradiate spacecraft and instruments, which, in spite of the vetoing detectors, results in a large instrumental background from activation of those materials, and leads to deterioration of the charge collection properties of the Ge detectors.Aim. We aim to determine the measurement characteristics of our detectors and their evolution with time, that is, their spectral response and instrumental background. These incur systematic variations in the SPI signal from celestial photons, hence their determination from a broad empirical database enables a reduction of underlying systematics in data analysis. For this, we explore compromises balancing temporal and spectral resolution within statistical limitations. Our goal is to enable modelling of background applicable to spectroscopic studies of the sky, accounting separately for changes of the spectral response and of instrumental background.Methods. We use 13.5 years of INTEGRAL/SPI data, which consist of spectra for each detector and for each pointing of the satellite. Spectral fits to each such spectrum, with independent but coherent treatment of continuum and line backgrounds, provides us with details about separated background components. From the strongest background lines, we first determine how the spectral response changes with time. Applying symmetry and long-term stability tests, we eliminate degeneracies and reduce statistical fluctuations of background parameters, with the aim of providing a self-consistent description of the spectral response for each individual detector. Accounting for this, we then determine how the instrumental background components change in intensities and other characteristics, most-importantly their relative distribution among detectors.Results. Spectral resolution of Ge detectors in space degrades with time, up to 15% within half a year, consistently for all detectors, and across the SPI energy range. Semi-annual annealing operations recover these losses, yet there is a small long-term degradation. The intensity of instrumental background varies anti-correlated to solar activity, in general. There are significant differences among different lines and with respect to continuum. Background lines are found to have a characteristic, well-defined and long-term consistent intensity ratio among detectors. We use this to categorise lines in groups of similar behaviour. The dataset of spectral-response and background parameters as fitted across the INTEGRAL mission allows studies of SPI spectral response and background behaviour in a broad perspective, and efficiently supports precision modelling of instrumental background.Peer reviewedFinal Published versio

    Intellectual Property Law and Entertainment Law Issues

    Full text link
    The University of Georgia School of Law\u27s Dean Rusk Center hosted an intellectual property law lecture featuring Martin Kretschmer, professor of information jurisprudence and director of the Centre for Intellectual Property Policy & Management at Bournemouth University, U.K. Kretschmer discussed his groundbreaking work in artist compensation in the European Union as well as the contractual structures that drive creative industries on April 6 at 1:30 p.m. in the Larry Walker Room of Dean Rusk Hall. His lecture was followed by comments from W. Bruce Burch, UGA director of Interdisciplinary Certificate in Music Business; Bertis E. Downs IV, Georgia Law adjunct professor and general counsel for the music group R.E.M.; and John L. Turner, UGA Terry College of Business associate professor

    Becoming the Synthi-Fou: Stockhausen and the new keyboardism

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugĂ€nglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Karlheinz Stockhausen embraced the potential of electronic music to generate new timbres and acoustic typologies early in his career. After first experimenting with magnetic tape in works such as Gesang der JĂŒnglinge (1955) and Kontakte (1958–60), he later embraced other synthesis technologies for the production of large-scale spatial electro-acoustic works such as Sirius (1970) and Oktophonie (1990–91). His interest in technological advances in sound design and sound diffusion also managed to penetrate his highly evolved KlavierstĂŒcke

    Canonical Expansion of PT-Symmetric Operators and Perturbation Theory

    Full text link
    Let HH be any \PT symmetric Schr\"odinger operator of the type −ℏ2Δ+(x12+...+xd2)+igW(x1,...,xd) -\hbar^2\Delta+(x_1^2+...+x_d^2)+igW(x_1,...,x_d) on L2(Rd)L^2(\R^d), where WW is any odd homogeneous polynomial and g∈Rg\in\R. It is proved that ¶H\P H is self-adjoint and that its eigenvalues coincide (up to a sign) with the singular values of HH, i.e. the eigenvalues of H∗H\sqrt{H^\ast H}. Moreover we explicitly construct the canonical expansion of HH and determine the singular values ÎŒj\mu_j of HH through the Borel summability of their divergent perturbation theory. The singular values yield estimates of the location of the eigenvalues \l_j of HH by Weyl's inequalities.Comment: 20 page
    • 

    corecore