256 research outputs found
VISCOPLASTIC MODELS FOR FERROELECTRIC CERAMICS
Abstract Nonlinear hysteretic phenomena in polycrystalline ferroelectric ceramics are simulated using viscoplastic (rate-dependent) models without a switching condition. Viscoplastic models describe the domain structure evolution effectively: in terms of rate equations for the volume fractions of orientation variants. The results of a comparative study of two viscoplastic models for polycrystalline ferroelectrics undergoing a cubic-to-tetragonal phase transition are discussed. Both models allow for 90° and 180° polarization switching, but differ in the number of accessible domain orientations, which is six and forty-two, respectively. While the model with six polarization orientations provides a reasonable description of ferroelectric ceramics under uni-axial loading, the model with forty-two orientations reproduces the typical isotropic behaviour of polycrystalline materials and can be parameterized for multi-axial loading. Examples of the viscoplastic models application to rate-dependent phenomena in soft PZT ceramics and to a 3D finite element analysis of microstructural inhomogeneities in ferroelectric multi-layer films are given
A new interpretation of total column BrO during Arctic spring
Emission of bromine from sea-salt aerosol, frost flowers, ice leads, and snow results in the nearly complete removal of surface ozone during Arctic spring. Regions of enhanced total column BrO observed by satellites have traditionally been associated with these emissions. However, airborne measurements of BrO and O3 within the convective boundary layer (CBL) during the ARCTAS and ARCPAC field campaigns at times bear little relation to enhanced column BrO. We show that the locations of numerous satellite BrO “hotspots” during Arctic spring are consistent with observations of total column ozone and tropopause height, suggesting a stratospheric origin to these regions of elevated BrO. Tropospheric enhancements of BrO large enough to affect the column abundance are also observed, with important contributions originating from above the CBL. Closure of the budget for total column BrO, albeit with significant uncertainty, is achieved by summing observed tropospheric partial columns with calculated stratospheric partial columns provided that natural, short-lived biogenic bromocarbons supply between 5 and 10 ppt of bromine to the Arctic lowermost stratosphere. Proper understanding of bromine and its effects on atmospheric composition requires accurate treatment of geographic variations in column BrO originating from both the stratosphere and troposphere
Effects of residence and race on burden of travel for care: cross sectional analysis of the 2001 US National Household Travel Survey
BACKGROUND: Travel burden is a key element in conceptualizing geographic access to health care. Prior research has shown that both rural and minority populations bear disproportionate travel burdens. However, many studies are limited to specific types of patient or specific locales. The purpose of our study was to quantify geographic and race-based differences in distance traveled and time spent in travel for medical/dental care using representative national data. METHODS: Data were drawn from 2001 National Household Travel Survey (NHTS), a nationally representative, cross-sectional household survey conducted by the US Department of Transportation. Participants recorded all travel on a designated day; the overall response rate was 41%. Analyses were restricted to households reporting at least one trip for medical and/or dental care; 3,914 trips made by 2,432 households. Dependent variables in the analysis were road miles traveled, minutes spent traveling, and high travel burden, defined as more than 30 miles or 30 minutes per trip. Independent variables of interest were rural residence and race. Characteristics of the individual, the trip, and the community were controlled in multivariate analyses. RESULTS: The average trip for care in the US in 2001 entailed 10.2 road miles (16.4 kilometers) and 22.0 minutes of travel. Rural residents traveled further than urban residents in unadjusted analysis (17.5 versus 8.3 miles; 28.2 versus 13.4 km). Rural trips took 31.4% longer than urban trips (27.2 versus 20.7 minutes). Distance traveled did not vary by race. African Americans spent more time in travel than whites (29.1 versus 20.6 minutes); other minorities did not differ. In adjusted analyses, rural residence (odds ratio, OR, 2.67, 95% confidence interval, CI 1.39 5.1.5) was associated with a trip of 30 road miles or more; rural residence (OR, 1.80, CI 1.09 2.99) and African American race/ethnicity (OR 3.04. 95% CI 2.0 4.62) were associated with a trip lasting 30 minutes or longer. CONCLUSION: Rural residents and African Americans experience higher travel burdens than urban residents or whites when seeking medical/dental care
Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C−H Bond Activation
Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct functionalization of nitrogen heterocycles through C−H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes our work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods.
We initially discovered an intramolecular Rh-catalyzed C-2 alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. We then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, we discovered that a novel substrate-derived Rh−N-heterocyclic carbene (NHC) complex was involved as an intermediate. We then synthesized analogous Rh−NHC complexes directly by treating precursors to the intermediate [RhCl(PCy3)2] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazoline, and 1-methyl-1,4-benzodiazepine-2-one.
Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy3)2 fragment coordinates to the heterocycle before intramolecular activation of the C−H bond occurs. The resulting Rh−H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid cocatalysts accelerate the alkylation, we developed conditions that efficiently and intermolecularly alkylate a variety of heterocycles, including azoles, azolines, dihydroquinazolines, pyridines, and quinolines, with a wide range of functionalized olefins. We demonstrated the utility of this methodology in the synthesis of natural products, drug candidates, and other biologically active molecules.
In addition, we developed conditions to directly arylate these heterocycles with aryl halides. Our initial conditions that used PCy3 as a ligand were successful only for aryl iodides. However, efforts designed to avoid catalyst decomposition led to the development of ligands based on 9-phosphabicyclo[4.2.1]nonane (phoban) that also facilitated the coupling of aryl bromides. We then replicated the unique coordination environment, stability, and catalytic activity of this complex using the much simpler tetrahydrophosphepine ligands and developed conditions that coupled aryl bromides bearing diverse functional groups without the use of a glovebox or purified reagents. With further mechanistic inquiry, we anticipate that researchers will better understand the details of the aforementioned Rh-catalyzed C−H bond functionalization reactions, resulting in the design of more efficient and robust catalysts, expanded substrate scope, and new transformations
Quantifying the Link between Anatomical Connectivity, Gray Matter Volume and Regional Cerebral Blood Flow: An Integrative MRI Study
Background In the graph theoretical analysis of anatomical brain connectivity, the white matter connections between regions of the brain are identified and serve as basis for the assessment of regional connectivity profiles, for example, to locate the hubs of the brain. But regions of the brain can be characterised further with respect to their gray matter volume or resting state perfusion. Local anatomical connectivity, gray matter volume and perfusion are traits of each brain region that are likely to be interdependent, however, particular patterns of systematic covariation have not yet been identified. Methodology/Principal Findings We quantified the covariation of these traits by conducting an integrative MRI study on 23 subjects, utilising a combination of Diffusion Tensor Imaging, Arterial Spin Labeling and anatomical imaging. Based on our hypothesis that local connectivity, gray matter volume and perfusion are linked, we correlated these measures and particularly isolated the covariation of connectivity and perfusion by statistically controlling for gray matter volume. We found significant levels of covariation on the group- and regionwise level, particularly in regions of the Default Brain Mode Network. Conclusions/Significance Connectivity and perfusion are systematically linked throughout a number of brain regions, thus we discuss these results as a starting point for further research on the role of homology in the formation of functional connectivity networks and on how structure/function relationships can manifest in the form of such trait interdependency
Multimodal Chemosensory Integration through the Maxillary Palp in Drosophila
Drosophila melanogaster has an olfactory organ called the maxillary palp. It is smaller and numerically simpler than the antenna, and its specific role in behavior has long been unclear. Because of its proximity to the mouthparts, I explored the possibility of a role in taste behavior. Maxillary palp was tuned to mediate odor-induced taste enhancement: a sucrose solution was more appealing when simultaneously presented with the odorant 4-methylphenol. The same result was observed with other odors that stimulate other types of olfactory receptor neuron in the maxillary palp. When an antennal olfactory receptor was genetically introduced in the maxillary palp, the fly interpreted a new odor as a sweet-enhancing smell. These results all point to taste enhancement as a function of the maxillary palp. It also opens the door for studying integration of multiple senses in a model organism
The physics case of a 3 TeV muon collider stage
In the path towards a muon collider with center of mass energy of 10 TeV ormore, a stage at 3 TeV emerges as an appealing option. Reviewing the physicspotential of such muon collider is the main purpose of this document. In orderto outline the progression of the physics performances across the stages, a fewsensitivity projections for higher energy are also presented. There are manyopportunities for probing new physics at a 3 TeV muon collider. Some of themare in common with the extensively documented physics case of the CLIC 3 TeVenergy stage, and include measuring the Higgs trilinear coupling and testingthe possible composite nature of the Higgs boson and of the top quark at the 20TeV scale. Other opportunities are unique of a 3 TeV muon collider, and stemfrom the fact that muons are collided rather than electrons. This isexemplified by studying the potential to explore the microscopic origin of thecurrent -2 and -physics anomalies, which are both related with muons.<br
The physics case of a 3 TeV muon collider stage
In the path towards a muon collider with center of mass energy of 10 TeV ormore, a stage at 3 TeV emerges as an appealing option. Reviewing the physicspotential of such muon collider is the main purpose of this document. In orderto outline the progression of the physics performances across the stages, a fewsensitivity projections for higher energy are also presented. There are manyopportunities for probing new physics at a 3 TeV muon collider. Some of themare in common with the extensively documented physics case of the CLIC 3 TeVenergy stage, and include measuring the Higgs trilinear coupling and testingthe possible composite nature of the Higgs boson and of the top quark at the 20TeV scale. Other opportunities are unique of a 3 TeV muon collider, and stemfrom the fact that muons are collided rather than electrons. This isexemplified by studying the potential to explore the microscopic origin of thecurrent -2 and -physics anomalies, which are both related with muons.<br
T cell activation markers CD38 and HLA-DR indicative of non-seroconversion in anti-CD20-treated patients with multiple sclerosis following SARS-CoV-2 mRNA vaccination
Background Messenger RNA (mRNA) vaccines provide robust protection against SARS-CoV-2 in healthy individuals. However, immunity after vaccination of patients with multiple sclerosis (MS) treated with ocrelizumab (OCR), a B cell-depleting anti-CD20 monoclonal antibody, is not yet fully understood. Methods In this study, deep immune profiling techniques were employed to investigate the immune response induced by SARS-CoV-2 mRNA vaccines in untreated patients with MS (n=21), OCR-treated patients with MS (n=57) and healthy individuals (n=30). Results Among OCR-treated patients with MS, 63% did not produce detectable levels of antibodies (non-seroconverted), and those who did have lower spike receptor-binding domain-specific IgG responses compared with healthy individuals and untreated patients with MS. Before vaccination, no discernible immunological differences were observed between non-seroconverted and seroconverted OCR-treated patients with MS. However, non-seroconverted patients received overall more OCR infusions, had shorter intervals since their last OCR infusion and displayed higher OCR serum concentrations at the time of their initial vaccination. Following two vaccinations, non-seroconverted patients displayed smaller B cell compartments but instead exhibited more robust activation of general CD4+ and CD8+ T cell compartments, as indicated by upregulation of CD38 and HLA-DR surface expression, when compared with seroconverted patients. Conclusion These findings highlight the importance of optimising treatment regimens when scheduling SARS-CoV-2 vaccination for OCR-treated patients with MS to maximise their humoral and cellular immune responses. This study provides valuable insights for optimising vaccination strategies in OCR-treated patients with MS, including the identification of CD38 and HLA-DR as potential markers to explore vaccine efficacy in non-seroconverting OCR-treated patients with MS
- …