1,218 research outputs found
Nonthermal Bremsstrahlung and Hard X-ray Emission from Clusters of Galaxies
We have calculated nonthermal bremsstrahlung (NTB) models for the hard X-ray
(HXR) tails recently observed by BeppoSAX in clusters of galaxies. In these
models, the HXR emission is due to suprathermal electrons with energies of
about 10-200 keV. Under the assumption that the suprathermal electrons form
part of a continuous spectrum of electrons including highly relativistic
particles, we have calculated the inverse Compton (IC) extreme ultraviolet
(EUV), HXR, and radio synchrotron emission by the extensions of the same
populations. For accelerating electron models with power-law momentum spectra
(N[p] propto p^{- mu}) with mu <~ 2.7, which are those expected from strong
shock acceleration, the IC HXR emission exceeds that due to NTB. Thus, these
models are only of interest if the electron population is cut-off at some upper
energy <~1 GeV. Similarly, flat spectrum accelerating electron models produce
more radio synchrotron emission than is observed from clusters if the ICM
magnetic field is B >~ 1 muG. The cooling electron model produces vastly too
much EUV emission as compared to the observations of clusters. We have compared
these NTB models to the observed HXR tails in Coma and Abell 2199. The NTB
models require a nonthermal electron population which contains about 3% of the
number of electrons in the thermal ICM. If the suprathermal electron population
is cut-off at some energy above 100 keV, then the models can easily fit the
observed HXR fluxes and spectral indices in both clusters. For accelerating
electron models without a cutoff, the electron spectrum must be rather steep >~
2.9.Comment: Accepted for publication in the Astrophysical Journal. 10 pages with
5 embedded Postscript figures in emulateapj.sty. An abbreviated abstract
follow
Calibration and Analysis of a Multimodal Micro-CT and Structured Light Imaging System for the Evaluation of Excised Breast Tissue.
A multimodal micro-computed tomography (CT) and multi-spectral structured light imaging (SLI) system is introduced and systematically analyzed to test its feasibility to aid in margin delineation during breast conserving surgery (BCS). Phantom analysis of the micro-CT yielded a signal-to-noise ratio of 34, a contrast of 1.64, and a minimum detectable resolution of 240 ?m for a 1.2?min scan. The SLI system, spanning wavelengths 490?nm to 800?nm and spatial frequencies up to 1.37 , was evaluated with aqueous tissue simulating phantoms having variations in particle size distribution, scatter density, and blood volume fraction. The reduced scattering coefficient, and phase function parameter, ?, were accurately recovered over all wavelengths independent of blood volume fractions from 0% to 4%, assuming a flat sample geometry perpendicular to the imaging plane. The resolution of the optical system was tested with a step phantom, from which the modulation transfer function was calculated yielding a maximum resolution of 3.78 cycles per mm. The three dimensional spatial co-registration between the CT and optical imaging space was tested and shown to be accurate within 0.7?mm. A freshly resected breast specimen, with lobular carcinoma, fibrocystic disease, and adipose, was imaged with the system. The micro-CT provided visualization of the tumor mass and its spiculations, and SLI yielded superficial quantification of light scattering parameters for the malignant and benign tissue types. These results appear to be the first demonstration of SLI combined with standard medical tomography for imaging excised tumor specimens. While further investigations are needed to determine and test the spectral, spatial, and CT features required to classify tissue, this study demonstrates the ability of multimodal CT/SLI to quantify, visualize, and spatially navigate breast tumor specimens, which could potentially aid in the assessment of tumor margin status during BCS
Chandra measurements of non-thermal-like X-ray emission from massive, merging, radio-halo clusters
We report the discovery of spatially-extended, non-thermal-like emission
components in Chandra X-ray spectra for five of a sample of seven massive,
merging galaxy clusters with powerful radio halos. The emission components can
be fitted by power-law models with mean photon indices in the range 1.5 < Gamma
< 2.0. A control sample of regular, dynamically relaxed clusters, without radio
halos but with comparable mean thermal temperatures and luminosities, shows no
compelling evidence for similar components. Detailed X-ray spectral mapping
reveals the complex thermodynamic states of the radio halo clusters. Our
deepest observations, of the Bullet Cluster 1E 0657-56, demonstrate a spatial
correlation between the strongest power-law X-ray emission, highest thermal
pressure, and brightest 1.34GHz radio halo emission in this cluster. We confirm
the presence of a shock front in the 1E 0657-56 and report the discovery of a
new, large-scale shock front in Abell 2219. We explore possible origins for the
power-law X-ray components. These include inverse Compton scattering of cosmic
microwave background photons by relativistic electrons in the clusters;
bremsstrahlung from supra-thermal electrons energized by Coulomb collisions
with an energetic, nonthermal proton population; and synchrotron emission
associated with ultra-relativistic electrons. Interestingly, we show that the
power-law signatures may also be due to complex temperature and/or metallicity
structure in clusters particularly in the presence of metallicity gradients. In
this case, an important distinguishing characteristic between the radio halo
clusters and control sample of predominantly cool-core clusters is the
relatively low central X-ray surface brightness of the former.Comment: Accepted for publication in MNRAS (24 pages, 13 figures). Improved
discussion includes a new, possible explanation for `soft excess' X-ray
emission from clusters as an artifact of metallicity/temperature structure
and projection effects. Other physical explanations for the observed
non-thermal-like X-ray emission also remai
An XMM-Newton view of the cluster of galaxies Abell 85
We have observed the cluster of galaxies Abell 85 with XMM-Newton. These data
have allowed us to confirm in a previous paper the existence of the extended 4
Mpc filament detected by the ROSAT PSPC in the neighbourhood of this cluster,
and to determine an X-ray temperature of about about 2 keV. We now present a
thorough analysis of the properties of the X-ray gas in the cluster itself,
including temperature and metallicity maps for the entire cluster. These
results show that Abell 85 had intense merging activity in the past and is not
fully relaxed, even in the central region. We have also determined the
individual abundances for some iron-group metals and alpha-elements in various
regions; the ratios of these metallicities to the iron abundance show that both
supernova types Ia and II must be involved in the intra-cluster gas enrichment.
Spectral analysis of the central region suggests a different redshift of the
X-ray emitting gas compared to the mean cluster velocity derived from galaxy
member redshifts. We discuss the implications of the difference between the cD
galaxy redshift, the mean galaxy redshift and the hot gas redshift, as well as
the possibility of several groups being accreted on to Abell 85. Finally, we
obtain the dynamical mass profile and baryon fraction taking into account the
new determined temperature profile. The dynamical mass in Abell 85 has a steep
density profile, similar to the ones found in N-body simulations.Comment: Accepted for publication in Astronomy & Astrophysic
- …