We have calculated nonthermal bremsstrahlung (NTB) models for the hard X-ray
(HXR) tails recently observed by BeppoSAX in clusters of galaxies. In these
models, the HXR emission is due to suprathermal electrons with energies of
about 10-200 keV. Under the assumption that the suprathermal electrons form
part of a continuous spectrum of electrons including highly relativistic
particles, we have calculated the inverse Compton (IC) extreme ultraviolet
(EUV), HXR, and radio synchrotron emission by the extensions of the same
populations. For accelerating electron models with power-law momentum spectra
(N[p] propto p^{- mu}) with mu <~ 2.7, which are those expected from strong
shock acceleration, the IC HXR emission exceeds that due to NTB. Thus, these
models are only of interest if the electron population is cut-off at some upper
energy <~1 GeV. Similarly, flat spectrum accelerating electron models produce
more radio synchrotron emission than is observed from clusters if the ICM
magnetic field is B >~ 1 muG. The cooling electron model produces vastly too
much EUV emission as compared to the observations of clusters. We have compared
these NTB models to the observed HXR tails in Coma and Abell 2199. The NTB
models require a nonthermal electron population which contains about 3% of the
number of electrons in the thermal ICM. If the suprathermal electron population
is cut-off at some energy above 100 keV, then the models can easily fit the
observed HXR fluxes and spectral indices in both clusters. For accelerating
electron models without a cutoff, the electron spectrum must be rather steep >~
2.9.Comment: Accepted for publication in the Astrophysical Journal. 10 pages with
5 embedded Postscript figures in emulateapj.sty. An abbreviated abstract
follow