16,209 research outputs found
Oscillating chiral currents in nanotubes: a route to nanoscale magnetic test tubes
With a view to optimising the design of carbon-nanotube (CNT) windmills and
to maximising the internal magnetic field generated by chiral currents, we
present analytical results for the group velocity components of an electron
flux through chiral carbon nanotubes. Chiral currents are shown to exhibit a
rich behaviour and can even change sign and oscillate as the energy of the
electrons is increased. We find that the transverse velocity and associated
angular momentum of electrons is a maximum for non-metallic CNTs with a chiral
angle of 18. Such CNTs are therefore the optimal choice for CNT windmills
and also generate the largest internal magnetic field for a given longitudinal
current. For a longitudinal current of order amps, this field can be
of order Teslas, which is sufficient to produce interesting spintronic
effects and a significant contribution to the self inductance.Comment: 4 pages, 1 figur
Drive mechanism for production of simulated human breath
Simulated breath drive mechanism was developed as subsystem to breathing metabolic simulator. Mechanism reproduces complete range of human breath rate, breath depth, and breath waveform, as well as independently controlled functional residual capacity. Mechanism was found capable of simulating various individual human breathing characteristics without any changes of parts
Determination of failure limits for sterilizable solid rocket motor
A structural evaluation to establish probable failure limits and a series of environmental tests involving temperature cycling, sustained acceleration, and vibration were conducted on an 18-inch diameter solid rocket motor. Despite the fact that thermal, acceleration and vibration loads representing a severe overtest of conventional environmental requirements were imposed on the sterilizable motor, no structural failure of the grain or flexible support system was detected. The following significant conclusions are considered justified. It is concluded that: (1) the flexible grain retention system, which permitted heat sterilization at 275 F on the test motor, can readily be adopted to meet the environmental requirements of an operational motor design, and (2) if further substantiation of structural integrity is desired, the motor used is considered acceptable for static firing
Suppression of Giant Magnetoresistance by a superconducting contact
We predict that current perpendicular to the plane (CPP) giant
magnetoresistance (GMR) in a phase-coherent magnetic multilayer is suppressed
when one of the contacts is superconducting. This is a consequence of a
superconductivity-induced magneto-resistive (SMR) effect, whereby the
conductance of the ferromagnetically aligned state is drastically reduced by
superconductivity. To demonstrate this effect, we compute the GMR ratio of
clean (Cu/Co)_nCu and (Cu/Co)_nPb multilayers, described by an ab-initio spd
tight binding Hamiltonian. By analyzing a simpler model with two orbitals per
site, we also show that the suppression survives in the presence of elastic
scattering by impurities.Comment: 5 pages, 4 figures. Submitted to PR
Quantum-limited mass flow of liquid He
We consider theoretically the possibility of observing unusual quantum fluid
behavior in liquid He and solutions of He in He systems
confined to nano-channels. In the case of pure ballistic flow at very low
temperature conductance will be quantized in units of . We show that
these steps should be sensitive to increases in temperature. We also use of a
random scattering matrix simulation to study flow with diffusive wall
scattering. Universal conductance fluctuations analogous to those seen in
electron systems should then be observable. Finally we consider the possibility
of the cross-over to a one-dimensional system at sufficiently low temperature
where the system could form a Luttinger liquid
Recommended from our members
Realising the therapeutic potential of neuroactive steroid modulators of the GABA<sub>A</sub> receptor
In the 1980s particular endogenous metabolites of progesterone and of deoxycorticosterone were revealed to be potent, efficacious, positive allosteric modulators (PAMs) of the GABAA receptor (GABAAR). These reports were followed by the discovery that such steroids may be synthesised not only in peripheral endocrine glands, but locally in the central nervous system (CNS), to potentially act as paracrine, or autocrine "neurosteroid" messengers, thereby fine tuning neuronal inhibition. These discoveries triggered enthusiasm to elucidate the physiological role of such neurosteroids and explore whether their levels may be perturbed in particular psychiatric and neurological disorders. In preclinical studies the GABAAR-active steroids were shown to exhibit anxiolytic, anticonvulsant, analgesic and sedative properties and at relatively high doses to induce a state of general anaesthesia. Collectively, these findings encouraged efforts to investigate the therapeutic potential of neurosteroids and related synthetic analogues. However, following over 30 years of investigation, realising their possible medical potential has proved challenging. The recent FDA approval for the natural neurosteroid allopregnanolone (brexanolone) to treat postpartum depression (PPD) should trigger renewed enthusiasm for neurosteroid research. Here we focus on the influence of neuroactive steroids on GABA-ergic signalling and on the challenges faced in developing such steroids as anaesthetics, sedatives, analgesics, anticonvulsants, antidepressants and as treatments for neurodegenerative disorders
Demonstration of a sterilizable solid rocket motor system
A solid propellant rocket motor containing 60.9 Kg (134-lb) of propellant was successfully static fired after being subjected to eight heat sterilization cycles (three 54-hour cycles plus five 40-hour cycles) at 125 C (257 F). The test motor, a modified SVM-3 chamber, incorporated a flexible grain retention system of EPR rubber to relieve thermal shrinkage stresses. The propellant used in the motor was ANB-3438, and 84 wt% solids system (18 wt% aluminum) containing 66 wt% stabilized ammonium perchlorate oxidizer and a saturated hydroxylterminated polybutadiene binder. Bonding of the propellant to the EPR insulation (GenGard V-4030) was provided by the use of SD-886, an epoxy urethane restriction
Giant Backscattering Peak in Angle-Resolved Andreev Reflection
It is shown analytically and by numerical simulation that the angular
distribution of Andreev reflection by a disordered normal-metal --
superconductor junction has a narrow peak at the angle of incidence. The peak
is higher than the well-known coherent backscattering peak in the normal state,
by a large factor G/G_0 (where G is the conductance of the junction and
G_0=2e^2/h). The enhanced backscattering can be detected by means of ballistic
point contacts.Comment: Instituut-Lorentz, Leiden, The Netherlands, 4 pages, REVTeX-3.0, 3
figure
- …