6,265 research outputs found

    Investigation of the enhanced spatial density of submicron lunar ejecta between L values 1.2 and 3.0 in the earth's magnetosphere: Theory

    Get PDF
    Initial results from the measurement conducted by the dust particle experiment on the lunar orbiting satellite Lunar Explorer 35 (LE 35) were reported with the data interpreted as indicating that the moon is a significant source of micrometeroids. Primary sporadic and stream meteoroids impacting the surface of the moon at hypervelocity was proposed as the source of micron and submicron particles that leave the lunar craters with velocities sufficient to escape the moon's gravitational sphere of influence. No enhanced flux of lunar ejecta with masses greater than a nanogram was detected by LE 35 or the Lunar Orbiters. Hypervelocity meteoroid simulation experiments concentrating on ejecta production combined with extensive analyses of the orbital dynamics of micron and submicron lunar ejecta in selenocentric, cislunar, and geocentric space have shown that a pulse of these lunar ejecta, with a time correlation relative to the position of the moon relative to the earth, intercepts the earth's magnetopause surface (EMPs). As shown, a strong reason exists for expecting a significant enhancement of submicron dust particles in the region of the magnetosphere between L values of 1.2 and 3.0. This is the basis for the proposal of a series of experiments to investigate the enhancement or even trapping of submicron lunar ejecta in this region. The subsequent interaction of this mass with the upper-lower atmosphere of the earth and possible geophysical effects can then be studied

    Off-diagonal hyperfine interaction between the 6p1/2 and 6p3/2 levels in 133Cs

    Full text link
    The off-diagonal hyperfine interaction between the 6p1/2 and 6p3/2 states in 133Cs is evaluated in third-order MBPT giving 37.3 Hz and 48.3 Hz, respectively, for second-order energies of the 6p3/2 F=3 and F=4 levels. This result is a factor of 10 smaller than one obtained from an uncorrelated first-order Dirac-Hartree-Fock calculation and used in the analysis of a recent high-precision (< 2 kHz) measurement of the 6p3/2 hyperfine structure [Gerginov et al. Phys. Rev. Lett. 91, 72301 (2003)]. The factor of 10 difference has negligible effect on the conclusions of the recent experiment but will become important for experiments carried out at a precision of better than 1 kHz

    Note on Approximate Evolution

    Get PDF
    n/

    Magnetodielectric coupling of infrared phonons in single crystal Cu2_{2}OSeO3_{3}

    Get PDF
    Reflection and transmission as a function of temperature have been measured on a single crystal of the magnetoelectric ferrimagnetic compound Cu2_{2}OSeO3_{3} utilizing light spanning the far infrared to the visible portions of the electromagnetic spectrum. The complex dielectric function and optical properties were obtained via Kramers-Kronig analysis and by fits to a Drude-Lortentz model. The fits of the infrared phonons show a magnetodielectric effect near the transition temperature (Tc∼60T_{c}\sim 60~K). Assignments to strong far infrared phonon modes have been made, especially those exhibiting anomalous behavior around the transition temperature

    Finite element thermal analysis of the fusion welding of a P92 steel pipe

    Get PDF
    Fusion welding is common in steel pipeline construction in fossil-fuel power generation plants. Steel pipes in service carry steam at high temperature and pressure, undergoing creep during years of service; their integrity is critical for the safe operation of a plant. The high-grade martensitic P92 steel is suitable for plant pipes for its enhanced creep strength. P92 steel pipes are usually joined together with a similar weld metal. Martensitic pipes are sometimes joined to austenitic steel pipes using nickel based weld consumables. Welding involves severe thermal cycles, inducing residual stresses in the welded structure, which, without post weld heat treatment (PWHT), can be detrimental to the integrity of the pipes. Welding residual stresses can be numerically simulated by applying the finite element (FE) method in Abaqus. The simulation consists of a thermal analysis, determining the temperature history of the FE model, followed by a sequentially-coupled structural analysis, predicting residual stresses from the temperature history. &lt;br&gt;&lt;br&gt; In this paper, the FE thermal analysis of the arc welding of a typical P92 pipe is presented. The two parts of the P92 steel pipe are joined together using a dissimilar material, made of Inconel weld consumables, producing a multi-pass butt weld from 36 circumferential weld beads. Following the generation of the FE model, the FE mesh is controlled using Model Change in Abaqus to activate the weld elements for each bead at a time corresponding to weld deposition. The thermal analysis is simulated by applying a distributed heat flux to the model, the accuracy of which is judged by considering the fusion zones in both the parent pipe as well as the deposited weld metal. For realistic fusion zones, the heat flux must be prescribed in the deposited weld pass and also the adjacent pipe elements. The FE thermal results are validated by comparing experimental temperatures measured by five thermocouples on the pipe outside surface with the FE temperature history at corresponding nodal points

    Simulation of truncated normal variables

    Full text link
    We provide in this paper simulation algorithms for one-sided and two-sided truncated normal distributions. These algorithms are then used to simulate multivariate normal variables with restricted parameter space for any covariance structure.Comment: This 1992 paper appeared in 1995 in Statistics and Computing and the gist of it is contained in Monte Carlo Statistical Methods (2004), but I receive weekly requests for reprints so here it is

    The Photosynthetic Function of Manganese and Chloride

    Get PDF
    Author Institution: Charles F. Kettering Foundation, Yellow Springs, Ohi

    Effect of anisotropy on universal transport in unconventional superconductors

    Full text link
    We investigate the universal electronic transport for a mixed dx2−y2d_{x^2-y^2}+s-wave superconductor in the presence of an anisotropic elliptical Fermi surface. Similar to the universal low-temperature transport predicted in a dx2−y2d_{x^2-y^2}-wave superconductor with a circular Fermi surface, anisotropic universal features are found in the low-temperature microwave conductivity, and thermal conductivity in the anisotropic system. The effects of anisotropy on the penetration depth, impurity induced TcT_c suppression, and the zero-frequency density of states are also considered. While a small amount of anisotropy can lead to a strong suppression of the effective scattering rate and hence the density of states at zero frequency, experimental data suggests that large effects are restored by a negative ss-component gap admixture.Comment: 8 page

    A perpetual switching system in pulmonary capillaries

    Get PDF
    Of the 300 billion capillaries in the human lung, a small fraction meet normal oxygen requirements at rest, with the remainder forming a large reserve. The maximum oxygen demands of the acute stress response require that the reserve capillaries are rapidly recruited. To remain primed for emergencies, the normal cardiac output must be parceled throughout the capillary bed to maintain low opening pressures. The flow-distributing system requires complex switching. Because the pulmonary microcirculation contains contractile machinery, one hypothesis posits an active switching system. The opposing hypothesis is based on passive switching that requires no regulation. Both hypotheses were tested ex vivo in canine lung lobes. The lobes were perfused first with autologous blood, and capillary switching patterns were recorded by videomicroscopy. Next, the vasculature of the lobes was saline flushed, fixed by glutaraldehyde perfusion, flushed again, and then reperfused with the original, unfixed blood. Flow patterns through the same capillaries were recorded again. The 16-min-long videos were divided into 4-s increments. Each capillary segment was recorded as being perfused if at least one red blood cell crossed the entire segment. Otherwise it was recorded as unperfused. These binary measurements were made manually for each segment during every 4 s throughout the 16-min recordings of the fresh and fixed capillaries (>60,000 measurements). Unexpectedly, the switching patterns did not change after fixation. We conclude that the pulmonary capillaries can remain primed for emergencies without requiring regulation: no detectors, no feedback loops, and no effectors-a rare system in biology. NEW & NOTEWORTHY The fluctuating flow patterns of red blood cells within the pulmonary capillary networks have been assumed to be actively controlled within the pulmonary microcirculation. Here we show that the capillary flow switching patterns in the same network are the same whether the lungs are fresh or fixed. This unexpected observation can be successfully explained by a new model of pulmonary capillary flow based on chaos theory and fractal mathematics
    • …
    corecore