corresponding algebraic equation is of deficiency 1 , and the corresponding integrals elliptic. Hence the hyperelliptio integrals to which the group in question leads, are those which can be formed by a quadratic substitution from elliptic integrals. But these are of known form, and hence in this particular case a definite relation is obtained, without further calculation, between the nature of the group and the nature of the algebraic equation to which it leads. As a further verification, it may be very easily shown in this case, from the relation

$$
\theta\left(z, J_{n}\right)=\theta^{\prime}\left(z, J_{p}^{\prime}\right),
$$

proved on the last page, that

$$
a_{12}=\frac{1}{2} a_{11},
$$

which relation between the periods of the hyperelliptic integral involves the possibility of expressing it in terms of elliptic integrals by a quadratic substitution.

Note on Approximatc Evolution. By H. W. Lloyd Tanner, M.A., F.R.A.S. Received June 6th, 1892. Read June 9 th, 1892.

In a paper published in the Proceedings of the Society (Vol. xviri., pp. 171-178), Professor Hill has pointed out that the rule (T'odhunter's Algebra, Art. 246) for contracting the process of finding the square and cube roots of a number, is incorrect in some cases. It is desirnble to havo a practical test for distinguishing the cases in which the rule is available from those in which it fails. Such a testi is obtained by a slight modification of Todhunter's discussion (loc. cit.), which enables us also to state two limits between which the required root must lic.

Square Root.
It is convenient to lake the decimal point in N, the number whose square root is to be fonnd, so that the integral part of $\sqrt{ } / N$ may con-
sist of $2 n+1$ figures. Of these the first $n+1$ are supposed to have been found, giving an approximate valuo, a, of the root. If x be the rest of the root, we have

$$
\begin{gathered}
N=(a+x)^{2} \\
q=\left(N-a^{2}\right) / 2 a \\
q=x+\frac{x^{2}}{2 a}
\end{gathered}
$$

and, putting

Hence, providing that

$$
\begin{gathered}
\delta>\frac{x^{3}}{2 a}, \\
x+\delta>q>x ;
\end{gathered}
$$

or, what is the same thing,

$$
q>x>q-\delta .
$$

Now, from the meanings of a, x,

$$
a \geq 10^{2 n}, \quad x<10^{n}
$$

$$
\begin{aligned}
& m^{3} \\
& 2 a
\end{aligned}<\frac{1}{2},
$$

and we may take $\frac{1}{2}$ as a value of δ. It follows that

$$
q>x>q-\frac{1}{2} .
$$

Hence it, is clear that, if q and $q-\frac{1}{2}$ have tho same integral part, this is also the integral part of x. If, on the other hand, there be on integer between q and $q-\frac{1}{2}$, it is the nearest integer to x, but the integral part of x is not determined.

Since $q>x, q^{2} / 2 a>x^{2} / 2 a$. Wo may therefore take $\delta=q^{2} / 2 a$, a valuo which will usually, but not always, be less than the value assigued above. Hence

$$
q>x>q-\frac{q^{2}}{2 a a} .
$$

The limits for $\sqrt{ } N$ thus obtained,

$$
a+q>\sqrt{ } N>a+q-\frac{q^{2}}{2 a}
$$

are the first two, or threc, terms of the expansion of $\left(a^{3}+2 n q\right)^{\text {b }}$.

Culbe Rinot.

Suppose $\sqrt[3]{N}$ to have $2 n+2$ figures in its integral part, of which $n+2$ havo beon determined, giving an approximato valno a of tho
root. Then, writing q for $\left(N-a^{5}\right) / 3 n^{2}$, and putting

$$
N=(a+x)^{s},
$$

we have

$$
q=x+\frac{x^{2}}{a}+\frac{x^{8}}{3 a^{2}} ;
$$

therefore

$$
q>x>q-\delta
$$

if

$$
\delta>\frac{x^{8}}{n}+\frac{x^{3}}{3 a^{2}} .
$$

Now

$$
a \geqq 10^{2 n+1}, \quad x<10^{n} ;
$$

therefore

$$
\begin{aligned}
\frac{x^{2}}{a}+\frac{x^{8}}{3 a^{2}} & <\frac{1}{10}+\frac{1}{3} \cdot \frac{1}{10^{n+2}} \\
& <\frac{1}{10}+\frac{1}{3} \cdot \frac{1}{10^{3}}
\end{aligned}
$$

so that we may take

$$
\delta=\cdot 1003
$$

Hence, if the decimal part of q be less than 1003 , we cannot tell the integral part of x, but the nearest integer to x is known, being the integral part of q.

If the decimal part of q lie between $\cdot 600 \dot{3}$ and $\cdot 5$ we cannot tell the nearest integer to x, but the integral part of x is the same as the integral part of q.

In all other cases we can tell both the greatest integer in x and its nearest integer.

The limits found for $\sqrt[9]{ } N$, viz. $a+q$ and $a+q-\delta$, become respectively the first two and the first three terms of the expansion of $\left(a^{8}+3 q a^{2}\right)^{k}$ by the binomial theorem, if q^{2} / a be put for δ. This is a proper value for δ; for, since

$$
\begin{aligned}
& q>x+x^{2} / a \\
& q^{2} / a> x^{2} / a+2 x^{3} / a^{2}+x^{4} / a^{8} \\
&> \frac{x^{2}}{a}+\frac{x^{8}}{3 a^{2}} .
\end{aligned}
$$

