11,235 research outputs found

    Anisotropic domain walls

    Get PDF
    We find an anisotropic, non-supersymmetric generalization of the extreme supersymmetric domain walls of simple non-dilatonic supergravity theory. As opposed to the isotropic non- and ultra-extreme domain walls, the anisotropic non-extreme wall has the \emph{same} spatial topology as the extreme wall. The solution has naked singularities which vanish in the extreme limit. Since the Hawking temperature on the two sides is different, the generic solution is unstable to Hawking decay.Comment: 11 pages, LaTeX, 3 PostScript figures, uses amstex and epsfi

    The Power Spectrum of the PSC Redshift Survey

    Get PDF
    We measure the redshift-space power spectrum P(k) for the recently completed IRAS Point Source Catalogue (PSC) redshift survey, which contains 14500 galaxies over 84% of the sky with 60 micron flux >= 0.6 Jansky. Comparison with simulations shows that our estimated errors on P(k) are realistic, and that systematic errors due to the finite survey volume are small for wavenumbers k >~ 0.03 h Mpc^-1. At large scales our power spectrum is intermediate between those of the earlier QDOT and 1.2 Jansky surveys, but with considerably smaller error bars; it falls slightly more steeply to smaller scales. We have fitted families of CDM-like models using the Peacock-Dodds formula for non-linear evolution; the results are somewhat sensitive to the assumed small-scale velocity dispersion \sigma_V. Assuming a realistic \sigma_V \approx 300 km/s yields a shape parameter \Gamma ~ 0.25 and normalisation b \sigma_8 ~ 0.75; if \sigma_V is as high as 600 km/s then \Gamma = 0.5 is only marginally excluded. There is little evidence for any `preferred scale' in the power spectrum or non-Gaussian behaviour in the distribution of large-scale power.Comment: Latex, uses mn.sty, 14 pages including 11 Postscript figures. Accepted by MNRA

    Derivation of the quantum probability law from minimal non-demolition measurement

    Full text link
    One more derivation of the quantum probability rule is presented in order to shed more light on the versatile aspects of this fundamental law. It is shown that the change of state in minimal quantum non-demolition measurement, also known as ideal measurement, implies the probability law in a simple way. Namely, the very requirement of minimal change of state, put in proper mathematical form, gives the well known Lueders formula, which contains the probability rule.Comment: 8 page

    Mid-Infrared Emission from E+A Galaxies in the Coma Cluster

    Full text link
    We have used ISO to observe at 12ÎŒ\mum seven E+A galaxies plus an additional emission line galaxy, all in the Coma cluster. E+A galaxies lacking narrow emission lines have 2.2ÎŒ\mum to 12ÎŒ\mum flux density ratios or limits similar to old stellar populations (typical of early-type galaxies). Only galaxies with emission lines have enhanced 12ÎŒ\mum flux density. Excess 12ÎŒ\mum emission is therefore correlated with the presence of on-going star formation or an active galactic nucleus (AGN). By comparing the current star formation rates with previous rates estimated from the Balmer absorption features, we divide the galaxies into two groups: those for which star formation has declined significantly following a dramatic peak ∌\sim 1 Gyr ago; and those with a significant level of ongoing star formation or/and an AGN. There is no strong difference in the spatial distribution on the sky between these two groups. However, the first group has systemic velocities above the mean cluster value and the second group below that value. This suggests that the two groups differ kinematically. Based on surveys of the Coma cluster in the radio, the IRAS sources, and galaxies detected in Hα\alpha emission, we sum the far infrared luminosity function of galaxies in the cluster. We find that star formation in late type galaxies is probably the dominant component of the Coma cluster far infrared luminosity. The presence of significant emission from intracluster dust is not yet firmly established. The member galaxies also account for most of the far infrared output from nearby rich clusters in general.Comment: AAS Latex, accepted for publication in Ap

    Correlated Anisotropies in the Cosmic Far-Infrared Background Detected by MIPS/Spitzer: Constraint on the Bias

    Full text link
    We report the detection of correlated anisotropies in the Cosmic Far-Infrared Background at 160 microns. We measure the power spectrum in the Spitzer/SWIRE Lockman Hole field. It reveals unambiguously a strong excess above cirrus and Poisson contributions, at spatial scales between 5 and 30 arcminutes, interpreted as the signature of infrared galaxy clustering. Using our model of infrared galaxy evolution we derive a linear bias b=1.74 \pm 0.16. It is a factor 2 higher than the bias measured for the local IRAS galaxies. Our model indicates that galaxies dominating the 160 microns correlated anisotropies are at z~1. This implies that infrared galaxies at high redshifts are biased tracers of mass, unlike in the local Universe.Comment: ApJ Letters, in pres

    Experiments with a Malkus-Lorenz water wheel: Chaos and Synchronization

    Full text link
    We describe a simple experimental implementation of the Malkus-Lorenz water wheel. We demonstrate that both chaotic and periodic behavior is found as wheel parameters are changed in agreement with predictions from the Lorenz model. We furthermore show that when the measured angular velocity of our water wheel is used as an input signal to a computer model implementing the Lorenz equations, high quality chaos synchronization of the model and the water wheel is achieved. This indicates that the Lorenz equations provide a good description of the water wheel dynamics.Comment: 12 pages, 7 figures. The following article has been accepted by the American Journal of Physics. After it is published, it will be found at http://scitation.aip.org/ajp

    Complementarity and Scientific Rationality

    Get PDF
    Bohr's interpretation of quantum mechanics has been criticized as incoherent and opportunistic, and based on doubtful philosophical premises. If so Bohr's influence, in the pre-war period of 1927-1939, is the harder to explain, and the acceptance of his approach to quantum mechanics over de Broglie's had no reasonable foundation. But Bohr's interpretation changed little from the time of its first appearance, and stood independent of any philosophical presuppositions. The principle of complementarity is itself best read as a conjecture of unusually wide scope, on the nature and future course of explanations in the sciences (and not only the physical sciences). If it must be judged a failure today, it is not because of any internal inconsistency.Comment: 29 page

    How unitary cosmology generalizes thermodynamics and solves the inflationary entropy problem

    Full text link
    We analyze cosmology assuming unitary quantum mechanics, using a tripartite partition into system, observer and environment degrees of freedom. This generalizes the second law of thermodynamics to "The system's entropy can't decrease unless it interacts with the observer, and it can't increase unless it interacts with the environment." The former follows from the quantum Bayes Theorem we derive. We show that because of the long-range entanglement created by cosmological inflation, the cosmic entropy decreases exponentially rather than linearly with the number of bits of information observed, so that a given observer can reduce entropy by much more than the amount of information her brain can store. Indeed, we argue that as long as inflation has occurred in a non-negligible fraction of the volume, almost all sentient observers will find themselves in a post-inflationary low-entropy Hubble volume, and we humans have no reason to be surprised that we do so as well, which solves the so-called inflationary entropy problem. An arguably worse problem for unitary cosmology involves gamma-ray-burst constraints on the "Big Snap", a fourth cosmic doomsday scenario alongside the "Big Crunch", "Big Chill" and "Big Rip", where an increasingly granular nature of expanding space modifies our life-supporting laws of physics. Our tripartite framework also clarifies when it is valid to make the popular quantum gravity approximation that the Einstein tensor equals the quantum expectation value of the stress-energy tensor, and how problems with recent attempts to explain dark energy as gravitational backreaction from super-horizon scale fluctuations can be understood as a failure of this approximation.Comment: Updated to match accepted PRD version, including Quantum Bayes Theorem derivation and rigorous proof that decoherence increases von Neumann entropy. 20 pages, 5 fig

    Hydrodynamics of polar liquid crystals

    Full text link
    Starting from a microscopic definition of an alignment vector proportional to the polarization, we discuss the hydrodynamics of polar liquid crystals with local C∞vC_{\infty v}-symmetry. The free energy for polar liquid crystals differs from that of nematic liquid crystals (D∞hD_{\infty h}) in that it contains terms violating the n→−n{\bf{n}}\to -{\bf{n}} symmetry. First we show that these Z2\mathcal{Z}_2-odd terms induce a general splay instability of a uniform polarized state in a range of parameters. Next we use the general Poisson-bracket formalism to derive the hydrodynamic equations of the system in the polarized state. The structure of the linear hydrodynamic modes confirms the existence of the splay instability.Comment: 9 pages, corrected typos, added references, revised content, to appear in PR

    Non-standard connections in classical mechanics

    Full text link
    In the jet-bundle description of first-order classical field theories there are some elements, such as the lagrangian energy and the construction of the hamiltonian formalism, which require the prior choice of a connection. Bearing these facts in mind, we analyze the situation in the jet-bundle description of time-dependent classical mechanics. So we prove that this connection-dependence also occurs in this case, although it is usually hidden by the use of the ``natural'' connection given by the trivial bundle structure of the phase spaces in consideration. However, we also prove that this dependence is dynamically irrelevant, except where the dynamical variation of the energy is concerned. In addition, the relationship between first integrals and connections is shown for a large enough class of lagrangians.Comment: 17 pages, Latex fil
    • 

    corecore