8,925 research outputs found
Universality Principle for Orbital Angular Momentum and Spin in Gravity with Torsion
We argue that compatibility with elementary particle physics requires
gravitational theories with torsion to be unable to distinguish between orbital
angular momentum and spin. An important consequence of this principle is that
spinless particles must move along autoparallel trajectories, not along
geodesics.Comment: Author Information under
http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of
paper also at http://www.physik.fu-berlin.de/~kleinert/kleiner_re27
The generating function for a particular class of characters of SU(n)
We compute the generating function for the characters of the irreducible
representations of SU(n) whose associated Young diagrams have only two rows
with the same number of boxes. The result is a rational determinantal
expression in which both the numerator and the denominator have a simple
structure when expressed in terms of Schur polynomials.Comment: 7 pages, no figure
Axial Torsion-Dirac spin Effect in Rotating Frame with Relativistic Factor
In the framework of spacetime with torsion and without curvature, the Dirac
particle spin precession in the rotational system is studied. We write out the
equivalent tetrad of rotating frame, in the polar coordinate system, through
considering the relativistic factor, and the resultant equivalent metric is a
flat Minkowski one. The obtained rotation-spin coupling formula can be applied
to the high speed rotating case, which is consistent with the expectation.Comment: 6 page
Explicitly correlated trial wave functions in Quantum Monte Carlo calculations of excited states of Be and Be-
We present a new form of explicitly correlated wave function whose parameters
are mainly linear, to circumvent the problem of the optimization of a large
number of non-linear parameters usually encountered with basis sets of
explicitly correlated wave functions. With this trial wave function we
succeeded in minimizing the energy instead of the variance of the local energy,
as is more common in quantum Monte Carlo methods. We applied this wave function
to the calculation of the energies of Be 3P (1s22p2) and Be- 4So (1s22p3) by
variational and diffusion Monte Carlo methods. The results compare favorably
with those obtained by different types of explicitly correlated trial wave
functions already described in the literature. The energies obtained are
improved with respect to the best variational ones found in literature, and
within one standard deviation from the estimated non-relativistic limitsComment: 19 pages, no figures, submitted to J. Phys.
Isolation and characterisation of microsatellite loci from Galapagos lava lizards (Microlophus spp.)
The Einstein static universe with torsion and the sign problem of the cosmological constant
In the field equations of Einstein-Cartan theory with cosmological constant a
static spherically symmetric perfect fluid with spin density satisfying the
Weyssenhoff restriction is considered. This serves as a rough model of space
filled with (fermionic) dark matter. From this the Einstein static universe
with constant torsion is constructed, generalising the Einstein Cosmos to
Einstein-Cartan theory.
The interplay between torsion and the cosmological constant is discussed. A
possible way out of the cosmological constant's sign problem is suggested.Comment: 8 pages, LaTeX; minor layout changes, typos corrected, one new
equation, new reference [5], completed reference [13], two references adde
Recommended from our members
Evidence of neutral transcriptome evolution in plants
The transcriptome of an organism is its set of gene transcripts (mRNAs) at a defined spatial and temporal locus. Because gene expression is affected markedly by
environmental and developmental perturbations, it is widely assumed that transcriptome divergence among taxa represents adaptive phenotypic selection. This assumption has been challenged by neutral theories which propose that stochastic
processes drive transcriptome evolution. To test for evidence of neutral transcriptome evolution in plants, we quantified 18 494 gene transcripts in nonsenescent leaves of 14 taxa of Brassicaceae using robust cross-species transcriptomics which includes a two-step physical and in silicobased normalization procedure based on DNA similarity among taxa. Transcriptome divergence correlates positively with evolutionary distance between taxa and with variation in gene expression among samples. Results are similar for pseudogenes and chloroplast genes evolving at different rates. Remarkably, variation in transcript abundance among root-cell samples correlates positively with
transcriptome divergence among root tissues and among taxa.
Because neutral processes affect transcriptome evolution in plants, many differences in gene expression among or within taxa may be nonfunctional, reflecting ancestral
plasticity and founder effects. Appropriate null models are required when comparing transcriptomes in space and time
CARBON BALANCE AND VEGETATION DYNAMICS IN AN OLDâGROWTH AMAZONIAN FOREST
Amazon forests could be globally significant sinks or sources for atmospheric carbon dioxide, but carbon balance of these forests remains poorly quantified. We surveyed 19.75 ha along four 1âkm transects of wellâdrained oldâgrowth upland forest in the TapajĂłs National Forest near SantarĂ©m, ParĂĄ, Brazil (2°51âČ S, 54°58âČ W) in order to assess carbon pool sizes, fluxes, and climatic controls on carbon balance. In 1999 there were, on average, 470 live trees per hectare with diameter at breast height (dbh) â„10 cm. The mean (and 95% ci) aboveground live biomass was 143.7 ± 5.4 Mg C/ha, with an additional 48.0 ± 5.2 Mg C/ha of coarse woody debris (CWD). The increase of live wood biomass after two years was 1.40 ± 0.62 Mg C·haâ1·yrâ1, the net result of growth (3.18 ± 0.20 Mg C·haâ1·yrâ1 from mean bole increment of 0.36 cm/yr), recruitment of new trees (0.63 ± 0.09 Mg C·haâ1·yrâ1, reflecting a notably high stem recruitment rate of 4.8 ± 0.9%), and mortality (â2.41 ± 0.53 Mg C·haâ1·yrâ1 from stem death of 1.7% yrâ1). The gain in live wood biomass was exceeded by respiration losses from CWD, resulting in an overall estimated net loss from total aboveground biomass of 1.9 ± 1.0 Mg C·haâ1·yrâ1. The presence of large CWD pools, high recruitment rate, and net accumulation of smallâtree biomass, suggest that a period of high mortality preceded the initiation of this study, possibly triggered by the strong El Niño Southern Oscillation events of the 1990s. Transfer of carbon between live and dead biomass pools appears to have led to substantial increases in the pool of CWD, causing the observed net carbon release. The data show that biometric studies of tropical forests neglecting CWD are unlikely to accurately determine carbon balance. Furthermore, the hypothesized sequestration flux from CO2 fertilization (\u3c0.5 Mg C·haâ1·yrâ1) would be comparatively small and masked for considerable periods by climateâdriven shifts in forest structure and associated carbon balance in tropical forests
- âŠ