71 research outputs found

    Three- and Four-Body Scattering Calculations including the Coulomb Force

    Full text link
    The method of screening and renormalization for including the Coulomb interaction in the framework of momentum-space integral equations is applied to the three- and four-body nuclear reactions. The Coulomb effect on the observables and the ability of the present nuclear potential models to describe the experimental data is discussed.Comment: Proceedings of the Critical Stability workshop, Erice, Sicily, October 2008, to be published in Few-Body System

    Low-energy p-d Scattering: High Precision Data, Comparisons with Theory, and Phase-Shift Analyses

    Get PDF
    Angular distributions of sigma(theta), A_y, iT_11, T_20, T_21, and T_22 have been measured for d-p scattering at E_c.m.=667 keV. This set of high-precision data is compared to variational calculations with the nucleon-nucleon potential alone and also to calculations including a three-nucleon (3N) potential. Agreement with cross-section and tensor analyzing power data is excellent when a 3N potential is used. However, a comparison between the vector analyzing powers reveals differences of approximately 40% in the maxima of the angular distributions which is larger than reported at higher energies for both p-d and n-d scattering. Single-energy phase-shift analyses were performed on this data set and a similar data set at E_c.m.=431.3 keV. The role of the different phase-shift parameters in fitting these data is discussed.Comment: 18 pages, 6 figure

    Nucleon-deuteron elastic scattering as a tool to probe properties of three-nucleon forces

    Get PDF
    Faddeev equations for elastic Nd scattering have been solved using modern NN forces combined with the Tucson-Melbourne two-pion exchange three-nucleon force, with a modification thereof closer to chiral symmetry and the Urbana IX three-nucleon force. Theoretical predictions for the differential cross section and several spin observables using NN forces only and NN forces combined with three-nucleon force models are compared to each other and to the existing data. A wide range of energies from 3 to 200 MeV is covered. Especially at the higher energies striking three-nucleon force effects are found, some of which are supported by the still rare set of data, some are in conflict with data and thus very likely point to defects in those three-nucleon force models.Comment: 30 pages, 14 Postscript figures; now minor changes in figures and reference

    Three-Nucleon Force Effects in Nucleon Induced Deuteron Breakup: Predictions of Current Models (I)

    Get PDF
    An extensive study of three-nucleon force effects in the entire phase space of the nucleon-deuteron breakup process, for energies from above the deuteron breakup threshold up to 200 MeV, has been performed. 3N Faddeev equations have been solved rigorously using the modern high precision nucleon-nucleon potentials AV18, CD Bonn, Nijm I, II and Nijm 93, and also adding 3N forces. We compare predictions for cross sections and various polarization observables when NN forces are used alone or when the two pion-exchange Tucson-Melbourne 3NF was combined with each of them. In addition AV18 was combined with the Urbana IX 3NF and CD Bonn with the TM' 3NF, which is a modified version of the TM 3NF, more consistent with chiral symmetry. Large but generally model dependent 3NF effects have been found in certain breakup configurations, especially at the higher energies, both for cross sections and spin observables. These results demonstrate the usefulness of the kinematically complete breakup reaction in testing the proper structure of 3N forces.Comment: 42 pages, 20 ps figures, 2 gif figure

    Polarization observables in p-d scattering below 30 MeV

    Full text link
    Differential and total breakup cross sections as well as vector and tensor analyzing powers for p-d scattering are studied for energies above the deuteron breakup threshold up to E(lab)=28 MeV. The p-d scattering wave function is expanded in terms of the correlated hyperspherical harmonic basis and the elastic S-matrix is obtained using the Kohn variational principle in its complex form. The effects of the Coulomb interaction, which are expected to be important in this energy range, have been rigorously taken into account. The Argonne AV18 interaction and the Urbana URIX three-nucleon potential have been used to perform a comparison to the available experimental data.Comment: 31 pages, 8 figure

    Insights into the migration of the European Roller from ring recoveries

    Get PDF
    AbstractDespite recent advances in avian tracking technology, archival devices still present several limitations. Traditional ring recoveries provide a complementary method for studying migratory movements, particularly for cohorts of birds with a low return rate to the breeding site. Here we provide the first international analysis of ring recovery data in the European Roller Coracias garrulus, a long-distance migrant of conservation concern. Our data comprise 58 records of Rollers ringed during the breeding season and recovered during the non-breeding season. Most records come from Eastern Europe, half are of juveniles and over three quarters are of dead birds. Thus, ring recoveries provide migration data for cohorts of Rollers—juveniles and unsuccessful migrants—for which no information currently exists, complementing recent tracking studies. Qualitatively, our results are consistent with direct tracking studies, illustrating a broad-front migration across the Mediterranean Basin in autumn and the use of the Arabian Peninsula by Rollers from eastern populations in spring. Autumn movements were, on average, in a more southerly direction for juveniles than adults, which were more easterly. Juvenile autumn recovery direction also appeared to be more variable than in adults, though this difference was not statistically significant. This is consistent with juveniles following a naïve vector-based orientation program, and perhaps explains the ‘moderate’ migratory connectivity previously described for the Roller. In the first (qualitative) analysis of Roller non-breeding season mortality, we highlight the high prevalence of shooting. The recovery age ratio was juvenile-biased in autumn but adult-biased in spring. Although not statistically significant, this difference points towards a higher non-breeding season mortality of juveniles than adults. Our study demonstrates the complementarity of ring recoveries to direct tracking, providing an insight into the migration of juvenile Rollers and non-breeding season mortality

    More than 75 percent decline over 27 years in total flying insect biomass in protected areas

    Get PDF
    Global declines in insects have sparked wide interest among scientists, politicians, and the general public. Loss of insect diversity and abundance is expected to provoke cascading effects on food webs and to jeopardize ecosystem services. Our understanding of the extent and underlying causes of this decline is based on the abundance of single species or taxonomic groups only, rather than changes in insect biomass which is more relevant for ecological functioning. Here, we used a standardized protocol to measure total insect biomass using Malaise traps, deployed over 27 years in 63 nature protection areas in Germany (96 unique location-year combinations) to infer on the status and trend of local entomofauna. Our analysis estimates a seasonal decline of 76%, and mid-summer decline of 82% in flying insect biomass over the 27 years of study. We show that this decline is apparent regardless of habitat type, while changes in weather, land use, and habitat characteristics cannot explain this overall decline. This yet unrecognized loss of insect biomass must be taken into account in evaluating declines in abundance of species depending on insects as a food source, and ecosystem functioning in the European landscape

    Primordial Nucleosynthesis for the New Cosmology: Determining Uncertainties and Examining Concordance

    Full text link
    Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) have a long history together in the standard cosmology. The general concordance between the predicted and observed light element abundances provides a direct probe of the universal baryon density. Recent CMB anisotropy measurements, particularly the observations performed by the WMAP satellite, examine this concordance by independently measuring the cosmic baryon density. Key to this test of concordance is a quantitative understanding of the uncertainties in the BBN light element abundance predictions. These uncertainties are dominated by systematic errors in nuclear cross sections. We critically analyze the cross section data, producing representations that describe this data and its uncertainties, taking into account the correlations among data, and explicitly treating the systematic errors between data sets. Using these updated nuclear inputs, we compute the new BBN abundance predictions, and quantitatively examine their concordance with observations. Depending on what deuterium observations are adopted, one gets the following constraints on the baryon density: OmegaBh^2=0.0229\pm0.0013 or OmegaBh^2 = 0.0216^{+0.0020}_{-0.0021} at 68% confidence, fixing N_{\nu,eff}=3.0. Concerns over systematics in helium and lithium observations limit the confidence constraints based on this data provide. With new nuclear cross section data, light element abundance observations and the ever increasing resolution of the CMB anisotropy, tighter constraints can be placed on nuclear and particle astrophysics. ABRIDGEDComment: 54 pages, 20 figures, 5 tables v2: reflects PRD version minor changes to text and reference
    corecore