114 research outputs found

    A novel miniature in-line load-cell to measure in-situ tensile forces in the tibialis anterior tendon of rats.

    Get PDF
    Direct measurements of muscular forces usually require a substantial rearrangement of the biomechanical system. To circumvent this problem, various indirect techniques have been used in the past. We introduce a novel direct method, using a lightweight (~0.5 g) miniature (3 x 3 x 7 mm) in-line load-cell to measure tension in the tibialis anterior tendon of rats. A linear motor was used to produce force-profiles to assess linearity, step-response, hysteresis and frequency behavior under controlled conditions. Sensor responses to a series of rectangular force-pulses correlated linearly (R2 = 0.999) within the range of 0-20 N. The maximal relative error at full scale (20 N) was 0.07% of the average measured signal. The standard deviation of the mean response to repeated 20 N force pulses was ± 0.04% of the mean response. The step-response of the load-cell showed the behavior of a PD2T2-element in control-engineering terminology. The maximal hysteretic error was 5.4% of the full-scale signal. Sinusoidal signals were attenuated maximally (-4 dB) at 200 Hz, within a measured range of 0.01-200 Hz. When measuring muscular forces this should be of minor concern as the fusion-frequency of muscles is generally much lower. The newly developed load-cell measured tensile forces of up to 20 N, without inelastic deformation of the sensor. It qualifies for various applications in which it is of interest directly to measure forces within a particular tendon causing only minimal disturbance to the biomechanical system

    Radiographs Reveal Exceptional Forelimb Strength in the Sabertooth Cat, Smilodon fatalis

    Get PDF
    Background: The sabertooth cat, Smilodon fatalis, was an enigmatic predator without a true living analog. Their elongate canine teeth were more vulnerable to fracture than those of modern felids, making it imperative for them to immobilize prey with their forelimbs when making a kill. As a result, their need for heavily muscled forelimbs likely exceeded that of modern felids and thus should be reflected in their skeletons. Previous studies on forelimb bones of S. fatalis found them to be relatively robust but did not quantify their ability to withstand loading. Methodology/Principal Findings: Using radiographs of the sabertooth cat, Smilodon fatalis, 28 extant felid species, and the larger, extinct American lion Panthera atrox, we measured cross-sectional properties of the humerus and femur to provide the first estimates of limb bone strength in bending and torsion. We found that the humeri of Smilodon were reinforced by cortical thickening to a greater degree than those observed in any living felid, or the much larger P. atrox. The femur of Smilodon also was thickened but not beyond the normal variation found in any other felid measured. Conclusions/Significance: Based on the cross-sectional properties of its humerus, we interpret that Smilodon was a powerful predator that differed from extant felids in its greater ability to subdue prey using the forelimbs. This enhanced forelimb strength was part of an adaptive complex driven by the need to minimize the struggles of prey in order to protec

    Cognitive frailty: rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group.

    Get PDF
    The frailty syndrome has recently attracted attention of the scientific community and public health organizations as precursor and contributor of age-related conditions (particularly disability) in older persons. in parallel, dementia and cognitive disorders also represent major healthcare and social priorities. although physical frailty and cognitive impairment have shown to be related in epidemiological studies, their pathophysiological mechanisms have been usually studied separately. an international Consensus Group on “Cognitive Frailty” was organized by the international academy on nutrition and aging (i.a.n.a) and the international association of Gerontology and Geriatrics (i.a.G.G) on april 16th, 2013 in toulouse (France). the present report describes the results of the Consensus Group and provides the first definition of a “Cognitive Frailty” condition in older adults. specific aim of this approach was to facilitate the design of future personalized preventive interventions in older persons. Finally, the Group discussed the use of multidomain interventions focused on the physical, nutritional, cognitive and psychological domains for improving the well-being and quality of life in the elderly. the consensus panel proposed the identification of the so-called “cognitive frailty” as an heterogeneous clinical manifestation characterized by the simultaneous presence of both physical frailty and cognitive impairment. in particular, the key factors defining such a condition include: 1) presence of physical frailty and cognitive impairment (Cdr=0.5); and 2) exclusion of concurrent ad dementia or other dementias. under different circumstances, cognitive frailty may represent a precursor of neurodegenerative processes. a potential for reversibility may also characterize this entity. a psychological component of the condition is evident and concurs at increasing the vulnerability of the individual to stressors

    Open Data for Global Science

    Get PDF
    The global science system stands at a critical juncture. On the one hand, it is overwhelmed by a hidden avalanche of ephemeral bits that are central components of modern research and of the emerging ‘cyberinfrastructure’4 for e-Science.5 The rational management and exploitation of this cascade of digital assets offers boundless opportunities for research and applications. On the other hand, the ability to access and use this rising flood of data seems to lag behind, despite the rapidly growing capabilities of information and communication technologies (ICTs) to make much more effective use of those data. As long as the attention for data policies and data management by researchers, their organisations and their funders does not catch up with the rapidly changing research environment, the research policy and funding entities in many cases will perpetuate the systemic inefficiencies, and the resulting loss or underutilisation of valuable data resources derived from public investments. There is thus an urgent need for rationalised national strategies and more coherent international arrangements for sustainable access to public research data, both to data produced directly by government entities and to data generated in academic and not-for-profit institutions with public funding. In this chapter, we examine some of the implications of the ‘data driven’ research and possible ways to overcome existing barriers to accessibility of public research data. Our perspective is framed in the context of the predominantly publicly funded global science system. We begin by reviewing the growing role of digital data in research and outlining the roles of stakeholders in the research community in developing data access regimes. We then discuss the hidden costs of closed data systems, the benefits and limitations of openness as the default principle for data access, and the emerging open access models that are beginning to form digitally networked commons. We conclude by examining the rationale and requirements for developing overarching international principles from the top down, as well as flexible, common-use contractual templates from the bottom up, to establish data access regimes founded on a presumption of openness, with the goal of better capturing the benefits from the existing and future scientific data assets. The ‘Principles and Guidelines for Access to Research Data from Public Funding’ from the Organisation for Economic Cooperation and Development (OECD), reported on in another article by Pilat and Fukasaku,6 are the most important recent example of the high-level (inter)governmental approach. The common-use licenses promoted by the Science Commons are a leading example of flexible arrangements originating within the community. Finally, we should emphasise that we focus almost exclusively on the policy—the institutional, socioeconomic, and legal aspects of data access—rather than on the technical and management practicalities that are also important, but beyond the scope of this article

    Catabolic enzyme activities in relation to premigratory fattening and muscle hypertrophy in the gray catbird ( Dumetella carolinensis )

    Full text link
    The flight muscles of the gray catbird ( Dumetella carolinensis ) were examined to determine if short term adjustments occur in the activity of key catabolic enzymes during preparation for long distance migration. The aerobic capacity of the pectoralis muscle as indicated by citrate synthase activity (CS) is among the highest reported for skeletal muscle (200 μmoles [min·g fresh mass] −1 at 25°C). The mass specific aerobic capacity as indicated by CS activity or cytochrome c concentration does not change during premigratory fattening (Fig. 2) or in relation to the muscle hypertrophy that occurs concomitantly. The maintenance of mass specific aerobic capacity indicates that the total aerobic capacity increases in proportion to the increase in muscle size. The augmented potential for total aerobic power output is considered an adaptation to meet the increased power requirements of flight due to the increased body mass. Additionally, the capacity to oxidize fatty acids, as indicated by β-hydroxyacyl-CoA dehydrogenase activity, approximately doubles during premigratory fattening (from 35 to 70 μmoles [min·g fresh mass] −1 at 25°C; Fig. 1A). This adaptation should favor fatty acid oxidation, thereby sparing carbohydrate and prolonging endurance. The activity of phosphofructokinase, a key glycolytic enzyme, does not change before migration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47125/1/360_2004_Article_BF01101461.pd

    Relationship among fibre type, myosin ATPase activity and contractile properties

    Full text link
    At least two types of skeletal muscle myosin have been described which differ in ATPase activity and stability in alkaline or acidic media. Differences in ATPase characteristics distinguish Type I and Type II fibres histochemically. In this study, ATPase activity of myosin from muscles of several species with known histochemical and contractile properties has been determined to test the hypothesis that (1) myosin ATPase activity, (2) histochemical determination of fibre types and (3) maximum shortening velocity, all provide equivalent estimates of contractile properties in muscles of mixed fibre types. Maximum shortening velocity appears to be proportional to ATPase activity as expected from previous reports by Barany. However, both myosin ATPase and the maximum shortening velocity exhibit curvilinear relationships to the fraction of cross-sectional area occupied by Type II fibres. Therefore, we reject the hypothesis and conclude that histochemically determined myofibrillar ATPase does not accurately reflect the intrinsic ATPase activity or shortening velocity in muscles of mixed fibre types. Our data are consistent with the presence of more than two myosin isozymes or with a mixture of isozymes within single muscle fibres.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42851/1/10735_2005_Article_BF01005238.pd

    Role of exercise in inducing increases in skeletal muscle fiber number

    No full text
    corecore