651 research outputs found

    Making Music: Composing With Young Musicians Program Evaluation

    Get PDF
    Making Music: Composing with Young Musicians is a research-commissioning project that involves a partnership between the Faculty of Education, University of Ottawa and Curriculum Services, Ottawa-Carleton District School Board (OCDSB). Over a three-year period, 18 new research-based compositions for students enrolled in school music programs were created, studied and premiered in local schools by teachers and their students. The purpose of this presentation is to provide the findings from three focus groups, each representing one of the three years of the Making Music Project. Overall, the participants indicated that the experience was very positive; they appreciated the opportunity for their students to connect with professional composers and they indicated an eagerness to participate in future projects. The major strength of the project was the opportunity for teachers and their students to collaborate with living composers in the creative process, and the major weakness was the composers’ lack of experience composing educational music (a wide-spread problem in Canada). Based on their experience in the project, the teachers indicated that they were more willing to teach music composition in their classes. They noted that the composers were far more involved in the students’ learning process than would normally occur with a standard commissioning program. The teachers also noted that their own involvement shifted towards a facilitating role rather than that of teacher-directed instruction. The project could be improved through better promotion to the schools and a prior meeting with the participants to articulate roles, responsibilities and process

    Efficacy of a self-help manual in increasing resilience in carers of adults with depression in Thailand

    Get PDF
    Caring for a person with a mental illness can have adverse effects on caregivers; however, little is known about how best to help such caregivers. The aim of the present study was to examine the efficacy of a cognitive behaviour therapy-guided self-help manual in increasing resilience in caregivers of individuals with depression, in comparison to caregivers who receive routine support only. A randomized, controlled trial was conducted, following CONSORT guidelines, with 54 caregivers allocated to parallel intervention (self-help manual) (n = 27) or control (standard support) (n = 27) groups. Resilience was assessed at baseline, post-test (week 8), and follow up (week 12). Intention-to-treat analyses were undertaken. Repeated-measures ANOVA indicated a significant difference in resilience scores between the three time points, showing a large effect. Pairwise comparisons between intervention and control groups indicated resilience to be significantly different between baseline and post-test, and between baseline and follow up, but not between post-test and follow up. Overall, the intervention group showed a slightly greater increase in resilience over time than the control group; however, the time–group interaction was not significant. Guided self-help is helpful in improving caregivers’ resilience and could be used as an adjunct to the limited support provided to carers by mental health nurses and other clinicians

    Acute stress differentially affects spatial configuration learning in high and low cortisol-responding healthy adults

    Get PDF
    Background: Stress and stress hormones modulate memory formation in various ways that are relevant to our understanding of stress-related psychopathology, such as posttraumatic stress disorder (PTSD). Particular relevance is attributed to efficient memory formation sustained by the hippocampus and parahippocampus. This process is thought to reduce the occurrence of intrusions and flashbacks following trauma, but may be negatively affected by acute stress. Moreover, recent evidence suggests that the efficiency of visuo-spatial processing and learning based on the hippocampal area is related to PTSD symptoms. Objective: The current study investigated the effect of acute stress on spatial configuration learning using a spatial contextual cueing task (SCCT) known to heavily rely on structures in the parahippocampus. Method: Acute stress was induced by subjecting participants (N = 34) to the Maastricht Acute Stress Test (MAST). Following a counterbalanced within-subject approach, the effects of stress and the ensuing hormonal (i.e., cortisol) activity on subsequent SCCT performance were compared to SCCT performance following a no-stress control condition. Results: Acute stress did not impact SCCT learning overall, but opposing effects emerged for high versus low cortisol responders to the MAST. Learning scores following stress were reduced in low cortisol responders, while high cortisol-responding participants showed improved learning. Conclusions: The effects of stress on spatial configuration learning were moderated by the magnitude of endogenous cortisol secretion. These findings suggest a possible mechanism by which cortisol responses serve an adaptive function during stress and trauma, and this may prove to be a promising route for future research in this area

    Low particulate carbon to nitrogen ratios in marine surface waters of the Arctic

    Get PDF
    During the Canada Three Oceans and Joint Ocean Ice Study projects in the summers of 2007 and 2008, we measured particulate organic carbon to nitrogen ratios (POC:PON) throughout the euphotic zone in subarctic and arctic waters. Depth-integrated values averaged 2.65 (±0.19) in the Beaufort Sea and Canada Basin (BS-CB domain), and were much lower than both the Redfield ratio (6.6) and the average ratios (3.9 to 5.6) measured across other arctic-subarctic domains. Average uptake ratios of C and N (ρC:ρN) were also lower (0.87±0.14) in BS-CB than in the other four domains (2.10 to 3.51). Decreasing POC:PON ratios were associated with low concentrations of phytoplankton C, reduced abundance of biogenic silica (bSiO2), a smaller relative contribution of the >5 ”m fraction to total chlorophyll a and a larger relative contribution of small flagellates (<8 ”m) to phytoplankton C. In the subsurface chlorophyll a maximum (SCM) within the BS-CB domain, phytoplankton C represented only ~13% of POC, and therefore low POC:PON may be influenced by the presence of heterotrophic microbes. These ratios are supported by data obtained during other arctic programs in 2006, 2008 and 2009. Previous work has suggested a link between freshening of surface waters and increasing dominance of picophytoplankton and bacterioplankton in the Canada Basin, and the low POC:PON ratios measured during this study may be a consequence of this shift. Our results have ramifications for the conversion between C- and N-based estimates of primary productivity, and for biogeochemical modeling of marine arctic waters.Facultad de Ciencias Naturales y Muse

    Understanding charge transport in lead iodide perovskite thin-film field-effect transistors

    Get PDF
    Fundamental understanding of the charge transport physics of hybrid lead halide perovskite semiconductors is important for advancing their use in high-performance optoelectronics. We use field-effect transistors (FETs) to probe the charge transport mechanism in thin films of methylammonium lead iodide (MAPbI3_{3}). We show that through optimization of thin-film microstructure and source-drain contact modifications, it is possible to significantly minimize instability and hysteresis in FET characteristics and demonstrate an electron field-effect mobility (ÎŒFET_{FET}) of 0.5 cm2^{2}/Vs at room temperature. Temperature-dependent transport studies revealed a negative coefficient of mobility with three different temperature regimes. On the basis of electrical and spectroscopic studies, we attribute the three different regimes to transport limited by ion migration due to point defects associated with grain boundaries, polarization disorder of the MA+^{+} cations, and thermal vibrations of the lead halide inorganic cages.S.P.S. acknowledges funding from the Royal Society London for a Newton Fellowship. B.Y. acknowledges support from China Council Scholarship and Cambridge Overseas Trust. A.S. and R.H.F. acknowledge funding and support from the Engineering and Physical Sciences Research Council (EPSRC) through the India-U.K. APEX project. P.D. acknowledges support from the European Union through the award of a Marie Curie Intra-European Fellowship. X.M. is grateful for the support from the Royal Society. B.N. is grateful for the support from Gates Cambridge and the Winton Program for the Physics of Sustainability. We acknowledge funding from the EPSRC through a program grant (EP/M005143/1). We acknowledge funding from the German Federal Ministry of Education and Research under agreement number 01162525/1. This work was performed in part on the SAXS/WAXS beamline of the Australian Synchrotron, Victoria, Australia (55, 56). C.R.M. acknowledges support from the Australian Research Council (DP13012616)

    Thermoregulatory, metabolic, and cardiovascular responses during 88 min of full-body ice immersion - A case study.

    Get PDF
    Exposure to extreme cold environments is potentially life-threatening. However, the world record holder of full-body ice immersion has repeatedly demonstrated an extraordinary tolerance to extreme cold. We aimed to explore thermoregulatory, metabolic, and cardiovascular responses during 88 min of full-body ice immersion. We continuously measured gastrointestinal temperature (Tgi ), skin temperature (Tskin), blood pressure, and heart rate (HR). Oxygen consumption (VO2 ) was measured at rest, and after 45 and 88 min of ice immersion, in order to calculate the metabolic heat production. Tskin dropped significantly (28-34°C to 4-15°C) and VO2 doubled (5.7-11.3 ml kg-1  min-1 ), whereas Tgi (37.6°C), HR (72 bpm), and mean arterial pressure (106 mmHg) remained stable during the first 30 min of cold exposure. During the remaining of the trial, Tskin and VO2 remained stable, while Tgi gradually declined to 37.0°C and HR and mean arterial blood pressure increased to maximum values of 101 bpm and 115 mmHg, respectively. Metabolic heat production in rest was 169 W and increased to 321 W and 314 W after 45 and 80 min of ice immersion. Eighty-eight minutes of full-body ice immersion resulted in minor changes of Tgi and cardiovascular responses, while Tskin and VO2 changed markedly. These findings may suggest that our participant can optimize his thermoregulatory, metabolic, and cardiovascular responses to challenge extreme cold exposure

    A Change in the Dark Room: The Effects of Human Factors and Cognitive Loading Issues for NextGen TRACON Air Traffic Controllers

    Get PDF
    By 2020 all aircraft in United States airspace must use ADS-B (Automatic Dependent Surveillance-Broadcast) Out. This is a key component of the Next Generation (NextGen) Air Transportation System, which marks the first time all aircraft will be tracked continuously using satellites instead of ground-based radar. Standard Terminal Automation Replacement System (STARS) in the Terminal Radar Approach Control (TRACON) is a primary NextGen upgrade where digitized automation/information surrounds STARS controllers while controlling aircraft. Applying the SHELL model, the authors analyze human factors changes affecting TRACON controllers from pre-STARS technology through NextGen technologies on performance. Results of an informal survey of STARS controllers assessed cognitive processing issues and indicates the greatest concern is with movements to view other displays and added time to re-engage STARS

    Fjord circulation permits a persistent subsurface water mass in a long, deep mid-latitude inlet

    Get PDF
    Fjords are deep nearshore zones that connect watersheds and oceans, typically behaving as an estuary. In some fjords, strong katabatic winds in winter (also known as Arctic outflow wind events) can lead to cooling and reoxygenation of subsurface waters, with effects lasting until the following autumn, as observed in 2019 in Bute Inlet, British Columbia, Canada. We used high-resolution, three-dimensional ocean model summer simulations to investigate the mechanisms allowing for the persistence of these cool, oxygen-rich subsurface conditions in Bute Inlet. The slow residual circulation underneath the brackish outflow (and consequent slow advection) in this long, deep fjord is a main reason why the cold subsurface water mass stays in place until conditions change in autumn (i.e., start of stronger wind mixing and reduced freshwater forcing). Another mechanism is a positive feedback provided by the presence of this subsurface water mass, since it further reduces the already weak residual circulation. These findings are applicable to any similar long, deep fjord that experiences katabatic winds in winter, and they could have implications not only for the preservation of water masses but other possible subsurface features (e.g., pollutant spills, planktonic larvae). Furthermore, the identification of mechanisms that permit persistent cold and oxygenated conditions is key to understanding potential areas of ecological refugia in a warming and deoxygenating ocean.</p
    • 

    corecore