9,304 research outputs found

    Comparisons of elastic and creep deformation linearly dependent upon stress

    Get PDF
    The theory of linear elasticity provides a complete description of reversible deformation under small stresses for both isotropic and anisotropic solids. At elevated temperatures, creep deformation sometimes occurs at a rate that is linearly dependent upon stress. When this form of creep arises from vacancy movement, there is possibility of anisotropic behaviour through the orientational dependence of average grain dimensions. This indicates that the elasticity theory may be utilised to provide comparable descriptions of such creep deformation, with creep strain built up of equal increments of strain occurring in equal intervals of time. The extent of this analogy is explored with the conclusion that its usefulness is substantial when grains are small in relation to geometrical features of the component but it is no longer applicable when the grains approach the size of these features and where there is a high gradient of stress

    End states, ladder compounds, and domain wall fermions

    Get PDF
    A magnetic field applied to a cross linked ladder compound can generate isolated electronic states bound to the ends of the chain. After exploring the interference phenomena responsible, I discuss a connection to the domain wall approach to chiral fermions in lattice gauge theory. The robust nature of the states under small variations of the bond strengths is tied to chiral symmetry and the multiplicative renormalization of fermion masses.Comment: 10 pages, 4 figures; final version for Phys. Rev. Let

    Spin filtering through excited states in double quantum dot pumps

    Full text link
    Recently it has been shown that ac-driven double quantum dots can act as spin pumps and spin filters. By calculating the current through the system for each spin polarization, by means of the time evolution of the reduced density matrix in the sequential tunneling regime (Born-Markov approximation), we demonstrate that the spin polarization of the current can be controlled by tuning the parameters (amplitude and frequency) of the ac field. Importantly, the pumped current as a function of the applied frequency presents a series of peaks which are uniquely associated with a definite spin polarization. We discuss how excited states participating in the current allow the system to behave as a bipolar spin filter by tuning the ac frequency and intensity. We also discuss spin relaxation and decoherence effects in the pumped current and show that measuring the width of the current vs frequency peaks allows to determine the spin decoherence time T2T_{2}.Comment: 10 pages. 5 figure

    Security of Quantum Bit-String Generation

    Full text link
    We consider the cryptographic task of bit-string generation. This is a generalisation of coin tossing in which two mistrustful parties wish to generate a string of random bits such that an honest party can be sure that the other cannot have biased the string too much. We consider a quantum protocol for this task, originally introduced in Phys. Rev. A {\bf 69}, 022322 (2004), that is feasible with present day technology. We introduce security conditions based on the average bias of the bits and the Shannon entropy of the string. For each, we prove rigorous security bounds for this protocol in both noiseless and noisy conditions under the most general attacks allowed by quantum mechanics. Roughly speaking, in the absence of noise, a cheater can only bias significantly a vanishing fraction of the bits, whereas in the presence of noise, a cheater can bias a constant fraction, with this fraction depending quantitatively on the level of noise. We also discuss classical protocols for the same task, deriving upper bounds on how well a classical protocol can perform. This enables the determination of how much noise the quantum protocol can tolerate while still outperforming classical protocols. We raise several conjectures concerning both quantum and classical possibilities for large n cryptography. An experiment corresponding to the scheme analysed in this paper has been performed and is reported elsewhere.Comment: 16 pages. No figures. Accepted for publication in Phys. Rev. A. A corresponding experiment is reported in quant-ph/040812

    Entanglement and Quantum Noise Due to a Thermal Bosonic Field

    Full text link
    We analyze the indirect exchange interaction between two two-state systems, e.g., spins 1/2, subject to a common finite-temperature environment modeled by bosonic modes. The environmental modes, e.g., phonons or cavity photons, are also a source of quantum noise. We analyze the coherent vs noise-induced features of the two-spin dynamics and predict that for low enough temperatures the induced interaction is coherent over time scales sufficient to create entanglement. A nonperturbative approach is utilized to obtain an exact solution for the onset of the induced interaction, whereas for large times, a Markovian scheme is used. We identify the time scales for which the spins develop entanglement for various spatial separations. For large enough times, the initially created entanglement is erased by quantum noise. Estimates for the interaction and the level of quantum noise for localized impurity electron spins in Si-Ge type semiconductors are given.Comment: 12 pages, 9 figures; typos correcte

    Vacuum polarisation and the muon g-2 in lattice QCD

    Get PDF
    We measure the hadronic contribution to the vacuum polarisation tensor, and use it to estimate the hadronic contribution to (g-2)_mu, the muon anomalous magnetic moment.Comment: 3 pages, 4 figures, Latex. Talk given by P.E.L. Rakow at Lattice2003(matrix

    The Functional Derivation of Master Equations

    Full text link
    Master equations describe the quantum dynamics of open systems interacting with an environment. They play an increasingly important role in understanding the emergence of semiclassical behavior and the generation of entropy, both being related to quantum decoherence. Presently we derive the exact master equation for a homogeneous scalar Higgs or inflaton like field coupled to an environment field represented by an infinite set of harmonic oscillators. Our aim is to demonstrate a derivation directly from the path integral representation of the density matrix propagator. Applications and generalizations of this result are discussed.Comment: 10 pages; LaTex. - Contribution to the workshop Hadron Physics VI, March 1998, Florianopolis (Brazil); proceedings, E. Ferreira et al., eds. (World Scientific). Replaced by slightly modified published versio

    Scaling in Complex Systems: Analytical Theory of Charged Pores

    Full text link
    In this paper we find an analytical solution of the equilibrium ion distribution for a toroidal model of a ionic channel, using the Perfect Screening Theorem (PST). The ions are charged hard spheres, and are treated using a variational Mean Spherical Approximation (VMSA) . Understanding ion channels is still a very open problem, because of the many exquisite tuning details of real life channels. It is clear that the electric field plays a major role in the channel behaviour, and for that reason there has been a lot of work on simple models that are able to provide workable theories. Recently a number of interesting papers have appeared that discuss models in which the effect of the geometry, excluded volume and non-linear behaviour is considered. We present here a 3D model of ionic channels which consists of a charged, deformable torus with a circular or elliptical cross section, which can be flat or vertical (close to a cylinder). Extensive comparisons to MC simulations were performed. The new solution opens new possibilities, such as studying flexible pores, and water phase transformations inside the pores using an approach similar to that used on flat crystal surfaces

    Crossing barriers in planetesimal formation: The growth of mm-dust aggregates with large constituent grains

    Full text link
    Collisions of mm-size dust aggregates play a crucial role in the early phases of planet formation. We developed a laboratory setup to observe collisions of dust aggregates levitating at mbar pressures and elevated temperatures of 800 K. We report on collisions between basalt dust aggregates of from 0.3 to 5 mm in size at velocities between 0.1 and 15 cm/s. Individual grains are smaller than 25 \mum in size. We find that for all impact energies in the studied range sticking occurs at a probability of 32.1 \pm 2.5% on average. In general, the sticking probability decreases with increasing impact parameter. The sticking probability increases with energy density (impact energy per contact area). We also observe collisions of aggregates that were formed by a previous sticking of two larger aggregates. Partners of these aggregates can be detached by a second collision with a probability of on average 19.8 \pm 4.0%. The measured accretion efficiencies are remarkably high compared to other experimental results. We attribute this to the rel. large dust grains used in our experiments, which make aggregates more susceptible to restructuring and energy dissipation. Collisional hardening by compaction might not occur as the aggregates are already very compact with only 54 \pm 1% porosity. The disassembly of previously grown aggregates in collisions might stall further aggregate growth. However, owing to the levitation technique and the limited data statistics, no conclusive statement about this aspect can yet be given. We find that the detachment efficiency decreases with increasing velocities and accretion dominates in the higher velocity range. For high accretion efficiencies, our experiments suggest that continued growth in the mm-range with larger constituent grains would be a viable way to produce larger aggregates, which might in turn form the seeds to proceed to growing planetesimals.Comment: 9 pages, 20 figure

    Large-scale surface reconstruction energetics of Pt(100) and Au(100) by all-electron DFT

    Full text link
    The low-index surfaces of Au and Pt all tend to reconstruct, a fact that is of key importance in many nanostructure, catalytic, and electrochemical applications. Remarkably, some significant questions regarding their structural energies remain even today, in particular for the large-scale quasihexagonal reconstructed (100) surfaces: Rather dissimilar reconstruction energies for Au and Pt in available experiments, and experiment and theory do not match for Pt. We here show by all-electron density-functional theory that only large enough "(5 x N)" approximant supercells capture the qualitative reconstruction energy trend between Au(100) and Pt(100), in contrast to what is often done in the theoretical literature. Their magnitudes are then in fact similar, and closer to the measured value for Pt(100); our calculations achieve excellent agreement with known geometric characteristics and provide direct evidence for the electronic reconstruction driving force.Comment: updated version - also includes EPAPS information as auxiliary file; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm
    • …
    corecore