9,194 research outputs found

    Active and passive microwave measurements in Hurricane Allen

    Get PDF
    The NASA Langley Research Center analysis of the airborne microwave remote sensing measurements of Hurricane Allen obtained on August 5 and 8, 1980 is summarized. The instruments were the C-band stepped frequency microwave radiometer and the Ku-band airborne microwave scatterometer. They were carried aboard a NOAA aircraft making storm penetrations at an altitude of 3000 m and are sensitive to rain rate, surface wind speed, and surface wind vector. The wind speed is calculated from the increase in antenna brightness temperature above the estimated calm sea value. The rain rate is obtained from the difference between antenna temperature increases measured at two frequencies, and wind vector is determined from the sea surface normalized radar cross section measured at several azimuths. Comparison wind data were provided from the inertial navigation systems aboard both the C-130 aircraft at 3000 m and a second NOAA aircraft (a P-3) operating between 500 and 1500 m. Comparison rain rate data were obtained with a rain radar aboard the P-3. Evaluation of the surface winds obtained with the two microwave instruments was limited to comparisons with each other and with the flight level winds. Two important conclusions are drawn from these comparisons: (1) the radiometer is accurate when predicting flight level wind speeds and rain; and (2) the scatterometer produces well behaved and consistent wind vectors for the rain free periods

    Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry

    Get PDF
    In this paper a systematic approach to the design of bulk isotropic magnetic metamaterials is presented. The role of the symmetries of both the constitutive element and the lattice are analyzed. For this purpose it is assumed that the metamaterial is composed by cubic SRR resonators, arranged in a cubic lattice. The minimum symmetries needed to ensure an isotropic behavior are analyzed, and some particular configurations are proposed. Besides, an equivalent circuit model is proposed for the considered cubic SRR resonators. Experiments are carried out in order to validate the proposed theory. We hope that this analysis will pave the way to the design of bulk metamaterials with strong isotropic magnetic response, including negative permeability and left-handed metamaterials.Comment: Submitted to Physical Review B, 23 page

    Electromagnetic multipole theory for optical nanomaterials

    Get PDF
    Optical properties of natural or designed materials are determined by the electromagnetic multipole moments that light can excite in the constituent particles. In this work we present an approach to calculate the multipole excitations in arbitrary arrays of nanoscatterers in a dielectric host medium. We introduce a simple and illustrative multipole decomposition of the electric currents excited in the scatterers and link this decomposition to the classical multipole expansion of the scattered field. In particular, we find that completely different multipoles can produce identical scattered fields. The presented multipole theory can be used as a basis for the design and characterization of optical nanomaterials

    Enhanced transmission versus localization of a light pulse by a subwavelength metal slit: Can the pulse have both characteristics?

    Full text link
    The existence of resonant enhanced transmission and collimation of light waves by subwavelength slits in metal films [for example, see T.W. Ebbesen et al., Nature (London) 391, 667 (1998) and H.J. Lezec et al., Science, 297, 820 (2002)] leads to the basic question: Can a light be enhanced and simultaneously localized in space and time by a subwavelength slit? To address this question, the spatial distribution of the energy flux of an ultrashort (femtosecond) wave-packet diffracted by a subwavelength (nanometer-size) slit was analyzed by using the conventional approach based on the Neerhoff and Mur solution of Maxwell's equations. The results show that a light can be enhanced by orders of magnitude and simultaneously localized in the near-field diffraction zone at the nm- and fs-scales. Possible applications in nanophotonics are discussed.Comment: 5 figure

    The Scattering of Electromagnetic Waves from Two-Dimensional Randomly Rough Penetrable Surfaces

    Full text link
    An accurate and efficient numerical simulation approach to electromagnetic wave scattering from two-dimensional, randomly rough, penetrable surfaces is presented. The use of the M\"uller equations and an impedance boundary condition for a two-dimensional rough surface yields a pair of coupled two-dimensional integral equations for the sources on the surface in terms of which the scattered field is expressed through the Franz formulas. By this approach, we calculate the full angular intensity distribution of the scattered field that is due to a finite incident beam of pp-polarized light. We specifically check the energy conservation (unitarity) of our simulations (for the non-absorbing case). Only after a detailed numerical treatment of {\em both} diagonal and close-to-diagonal matrix elements is the unitarity condition found to be well-satisfied for the non-absorbing case (U>0.995{\mathcal U}>0.995), a result that testifies to the accuracy of our approach.Comment: Revtex, 4 pages, 2 figure

    Lyman alpha line formation in starbursting galaxies II. Extremely Thick, Dustless, and Static HI Media

    Full text link
    The Lya line transfer in an extremely thick medium of neutral hydrogen is investigated by adopting an accelerating scheme in our Monte Carlo code to skip a large number of core or resonant scatterings. This scheme reduces computing time significantly with no sacrifice in the accuracy of the results. We applied this numerical method to the Lya transfer in a static, uniform, dustless, and plane-parallel medium. Two types of photon sources have been considered, the midplane source and the uniformly distributed sources. The emergent profiles show double peaks and absorption trough at the line-center. We compared our results with the analytic solutions derived by previous researchers, and confirmed that both solutions are in good agreement with each other. We investigated the directionality of the emergent Lya photons and found that limb brightening is observed in slightly thick media while limb darkening appears in extremely thick media. The behavior of the directionality is noted to follow that of the Thomson scattered radiation in electron clouds, because both Lya wing scattering and Thomson scattering share the same Rayleigh scattering phase function. The mean number of wing scatterings just before escape is in exact agreement with the prediction of the diffusion approximation. The Lya photons constituting the inner part of the emergent profiles follow the relationship derived from the diffusion approximation. We present a brief discussion on the application of our results to the formation of Lya broad absorption troughs and P-Cygni type Lya profiles seen in the UV spectra of starburst galaxies.Comment: 24 papges, 12 figures, The revised version submitted to Ap

    Sensational SuperCupboards

    Get PDF
    While the nation\u27s investment in nutrition assistance is an important and effective tool in fighting hunger and food insecurity, improving the diet quality of low-income Americans remains a major challenge. The SuperCupboard program is a successful community-based approach for educating low-income adults with families, thereby enabling them to prepare and consume healthy, nutritious, and safe diets and to become better managers of their food dollars

    Embedding the concept of ecosystems services:The utilisation of ecological knowledge in different policy venues

    Get PDF
    The concept of ecosystem services is increasingly being promoted by academics and policy makers as a means to protect ecological systems through more informed decision making. A basic premise of this approach is that strengthening the ecological knowledge base will significantly enhance ecosystem health through more sensitive decision making. However, the existing literature on knowledge utilisation, and many previous attempts to improve decision making through better knowledge integration, suggest that producing ‘more knowledge’ is only ever a necessary but insufficient condition for greater policy success. We begin this paper by reviewing what is already known about the relationship between ecological knowledge development and utilisation, before introducing a set of theme issue papers that examine—for the very first time—how this politically and scientifically salient relationship plays out across a number of vital policy venues such as land-use planning, policy-level impact assessment, and cost–benefit analysis. Following a detailed synthesis of the key findings of all the papers, this paper identifies and explores new research and policy challenges in this important and dynamic area of environmental governance

    Ileus and Small Bowel Obstruction in an Emergency Department Observation Unit: Are There Outcome Predictors?

    Get PDF
    DOI: 10.5811/westjem.2011.3.2175 Introduction: The purpose of our study was to describe the evaluation and outcome of patients with ileus and bowel obstruction admitted to an emergency department (ED) observation unit (OU) and to identify predictors of successful management for such patients. Methods: We performed a retrospective chart review of 129 patients admitted to a university-affiliated, urban, tertiary hospital ED OU from January 1999 through November 2004. Inclusion criteria were al
    corecore