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In this paper, a systematic approach to the design of bulk isotropic magnetic metamaterials is presented. The
roles of the symmetries of both the constitutive element and the lattice are analyzed. For this purpose, it is
assumed that the metamaterial is composed of cubic split ring resonators �SRRs� arranged in a cubic lattice.
The minimum symmetries needed to ensure an isotropic behavior are analyzed, and some particular configu-
rations are proposed. Besides, an equivalent circuit model is proposed for the considered cubic SRRs. Experi-
ments are carried out in order to validate the proposed theory. We hope that this analysis will pave the way to
the design of bulk metamaterials with strong isotropic magnetic response, including negative permeability and
left-handed metamaterials.
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I. INTRODUCTION

Metamaterials are artificial media exhibiting exotic elec-
tromagnetic properties not previously found in nature.
Among them, media showing simultaneously negative elec-
tric permittivity and magnetic permeability in some fre-
quency range, or “left-handed” metamaterials, are of particu-
lar interest. The striking properties of left-handed
metamaterials, including backward-wave propagation, nega-
tive refraction, and inverse Cerenkov and Doppler effects
were first reported by Veselago1 in 1968. However, the real-
istic implementations of left-handed metamaterials came
several decades later, as a combination of split ring resona-
tors �SRRs� and metallic wires.2 SRRs are small planar reso-
nators exhibiting a strong magnetic response, which were
proposed in 1999 by Pendry et al.3 as suitable “atoms” for
the development of negative magnetic permeability metama-
terials. One year later, Smith et al. demonstrated the possi-
bility of making up a left-handed medium by periodically
combining metallic wires—which provide an effective nega-
tive permittivity at microwaves4—and SRRs.2 In subsequent
works, other SRR designs were proposed,5–8 in order to re-
duce electrical size and/or cancel the bianisotropic behavior
of the original Pendry’s design. However, all the aforemen-
tioned implementations of negative permeability and left-
handed metamaterials are highly anisotropic—or even
bianisotropic5—providing only a uniaxial resonant magneti-
zation, while isotropy is needed for many interesting appli-
cations of metamaterials, as, for instance, the “perfect lens”
proposed by Pendry.9

The aforementioned implementations are, in fact, a com-
bination of two separate systems, one providing the negative
magnetic permeability �the SRR system� and the other pro-
viding the negative electric permittivity �the wire system�.
How both subsystems can be combined in order to obtain a
new system, whose electromagnetic properties were mainly
the superposition of the magnetic and the electric properties
of each subsystem, is an interesting and controversial
issue10,11 that is, however, beyond the scope of this paper. In
what follows, we will assume that it is possible to find some
combination of two isotropic subsystems, one made of me-

tallic wires �or other elements providing a negative electric
permittivity� and the other made of SRRs, whose superposi-
tion gives a left-handed metamaterial, and will focus our
attention on the design of isotropic systems of SRRs. Actu-
ally, since isotropic media with negative magnetic permeabil-
ity are not found in nature, an isotropic system of SRRs
providing such property in some frequency range will be an
interesting metamaterial by itself. These metamaterials could
provide the dual of negative electric permittivity media, with
similar applications �in imaging,9 for instance�. They would
be also of interest for magnetic shielding and other practical
applications.

A first attempt to design an isotropic magnetic metamate-
rial was carried out by Gay-Balmaz and Martin,12 who de-
signed a spherical magnetic resonator—formed by two SRRs
crossed in right angle—which is isotropic in two dimensions.
This result was later generalized in Ref. 13, where a fully
isotropic spherical magnetic resonator was proposed. How-
ever, from a practical standpoint, it is usually easier to work
with cubic designs. A first attempt on such direction was
made by Simovski and co-workers in Refs. 14–16, where
cubic arrangements of planar SRRs and omega particles were
proposed �see Figs. 1�a� and 1�b��. If only the magnetic
and/or electric dipole representations of the SRRs and/or
omega particles are considered, these arrangements are in-
variant under cubic symmetries. However, it has been
shown13,17 that this invariance is not enough to guarantee an
isotropic behavior since couplings between the planar reso-
nators forming the cubic arrangement can give rise to an
anisotropic behavior, even if its dipole representations sug-
gest an isotropic design. The first isotropic metamaterial de-
sign fully invariant under the whole group of symmetry of
the cube was proposed and simulated in Ref. 18. It is formed
by volumetric square SRRs with four gaps, in order to pro-
vide 90° rotation symmetries about any of the cube axes.
However, this design is unfortunately very difficult to imple-
ment in practice because it cannot be manufactured by using
standard photoetching techniques, as previous SRR
designs,2,3,5–8,13–17 and the gaps of the SRR have to be filled
with a high relative permittivity dielectric �about 100�. The
idea of using spatial symmetries to design isotropic metama-
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terials was further developed in Refs. 13, 17, and 19 leading
to the structures depicted in Figs. 1�c� and 1�d�.

A second group of attempts to design isotropic metama-
terials is developed in Ref. 20 and 21. In these works, lattices
of dielectric and/or paramagnetic spheres with very high re-
fractive index are proposed. If the refractive index of the
spheres is high enough, the internal wavelength becomes
small with regard to the macroscopic wavelength, and Mie
resonances of the spheres can be used to produce the nega-
tive effective permittivity and/or permeability. Since the
metamaterial “atoms” are spheres, the isotropy is ensured by
simply placing them in a cubic lattice. However, practical
difficulties to implement such proposals are not easy to over-
come. First of all, lossless media with the very high refrac-
tive index needed for the spheres are difficult to obtain. Sec-
ondly, the system has a very narrow band.21

All the previously reported proposals for isotropic mag-
netic metamaterial design use a “crystal-like” approach. That
is, they are based on the homogenization of a system of
magnetic resonators which, according to causality laws, ex-
hibit a strong diamagnetic response above resonance. There
is, however, another approach widely used in the microwave
community which is based on the transmission line analogy
to effective media. Initially proposed for two-dimensional
metamaterial design,22 it was recently generalized to three-
dimensional isotropic structures.23–26 The main advantage of
this approach is its broadband operation, since no resonators
are necessary for the design. However, it also presents dis-
advantages with regard to crystal-like approaches. The trans-
mission line approach to metamaterials does not seem to be
applicable beyond the microwave range, whereas a signifi-
cant magnetic response of the SRR has been shown in the
terahertz range and beyond.27,28 In addition, the coupling to
free space of the reported transmission line metamaterials
seems to be difficult and sometimes needs an additional spe-

cific interface �e.g., an antenna array25�, whereas this cou-
pling is direct in crystal-like metamaterials.

Finally, regarding isotropic left-handed metamaterial de-
sign, it should be mentioned that some recent proposals
based on random arrangements of chiral particles29,30 have
the advantage of providing simultaneously both electric and
magnetic negative polarizabilities. This approach can be
straightforwardly extended to the design of SRR magnetic
metamaterials, by simply considering random arrangements
of such elements. There is, however, a major difficulty with
this approach: the constitutive elements in a random compos-
ite have to be very small in comparison with the macroscopic
wavelength to show a true statistical behavior, but it is not
easy to design a SRR much smaller than one-tenth of the
wavelength. Due to this fact, periodic arrangements will be
considered in what follows.

The main aim of this paper is to present a systematic
approach to the design of metamaterial structures based on
periodic arrangements of SRRs. The first section is focused
on the spatial symmetries which are necessary to ensure an
isotropic behavior in the metamaterial. Cubic arrangements
of SRRs placed on cubic lattices are considered, and the
minimum symmetry requirements for both the individual
resonators and the lattices are investigated. The second sec-
tion is devoted to a deeper analysis of the isotropic cubic
SRRs forming the basis of the crystal structure. In the third
section, an equivalent circuit model for such cubic SRRs is
developed and applied to some specific examples. The fourth
section is focused on the experimental verification of the
analysis developed in the previous ones. Finally, the main
conclusions of the work are presented.

II. ROLE OF CUBIC SYMMETRIES

Let us assume that constitutive elements and the unit cell
of the material are much smaller than the operating wave-
length. In such a case, the interaction of electromagnetic field
with the material is described by means of constitutive rela-
tions. Besides, the material is supposed to be linear, so the
most general way to express those relations between electro-
magnetic intensities and electromagnetic flux densities is31

D = � · E + � · H ,

B = � · E + � · H , �1�

where �, � are second rank constitutive tensors and �, � are
second rank constitutive pseudotensors. In order to get a
macroscopic isotropic behavior, all constitutive tensors and
pseudotensors �, �, �, and � must become scalars or pseu-
doscalars.

Let us now address the problem of forcing the tensors �or
pseudotensors� in Eq. �1� to be scalars �or pseudoscalars� for
the specific case of a periodic structure. It is well known32,33

that there are 32 symmetry point groups for periodic crystals
which can be classified in 7 crystallographic systems. It is
also known that the cubic system is the only one that forces
any second rank tensor �or pseudotensor� to be a scalar �or a
pseudoscalar�.33 Since any material satisfying the linear con-
stitutive relations �Eq. �1�� and being invariant under the cu-

FIG. 1. Cubic constitutive elements for isotropic metamaterial
design. Cubes �a� and �b� were studied in Refs. 14–16. Their hidden
faces are arranged in such a way that the cube satisfies the central
symmetry to avoid magnetoelectric coupling. Cubes �c� and �d�
were proposed in Ref. 13 as truly three-dimensional �3D� isotropic
cubic resonators.
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bic symmetries exhibits an isotropic macroscopic behavior,
this section will be focused on the analysis of such cubic
symmetries. It is clear that any structure invariant under all
the symmetry transformations of the cube must be isotropic,
as already proposed by Koschny et al.18 Furthermore, the full
symmetry group of the cube contains four different sub-
groups also belonging to the cubic system and, thus, provid-
ing an isotropic macroscopic behavior. Since a less symmet-
ric design is subjected to less structural constraints, it may be
guessed that using these subgroups—instead of the whole
symmetry group of the cube—may have practical advan-
tages. Keeping this in mind, we will first give a short over-
view on the five cubic point groups. Next, we shall connect
these point groups with some real structures made of planar
resonators commonly used in metamaterials. This will be
done in two parts: the study of the symmetries of the consti-
tutive element, or the basis, and the analysis of the suitable
periodic arrangements, or the lattice. At the end of the sec-
tion some practical isotropic structures will be specifically
analyzed.

A. Cubic point groups

The five cubic point groups are schematically represented
in Fig. 2. Following Schöenflies’ notation and ordering by
degree of symmetry, these groups and their generators are as
follows:

�1� T= ��1 ,4x ·4y ,4y ·4x��=proper rotations of the regular
tetrahedron �12 operations�;

�2� Th= ��1 ,−1 ,4x ·4y ,4y ·4x��=T expanded by the inver-
sion �24 operations�;

�3� Td= ��1 ,−2x ,4x ·4y ,4y ·4x��=proper and improper rota-
tions of the regular tetrahedron �24 operations�;

�4� O= ��1 ,4x ,4y��=proper rotations of the cube �24 op-
erations�;

�5� Oh= ��1 ,−1 ,4x ,4y��=full symmetry group of the cube
�48 operations�.

We have used a widely used notation for symmetry trans-
formations, 1 being the identity operator, −1 the inversion,
np an n-fold rotation axis about the p axis, and −np the n-fold
axis about the p axis followed by the inversion. For example,
the operator −2x is the rotation through 180° about the x axis
followed by the inversion.

B. Cubic basis

In order to simplify the problem, the symmetries can be
separately imposed on the basis and the lattice of the struc-
ture. For the sake of simple fabrication, we will assume that
the basis is formed by six planar resonators placed over the
faces of an inert rigid cube, as in Fig. 1. If the crystal was
diluted enough, then the coupling between two neighboring
cubes would be much weaker than the coupling between the
six SRRs of the same cube and thus each cube could be seen
as a single cubic resonator �CR� electromagnetically coupled
to others. Such consideration implies that the interaction be-
tween the CRs forming the material can be described by
dipole-dipole interactions, higher order multipole interac-
tions being negligible. In such approximation, all the CRs are
properly described by second rank polarizability tensors con-
necting the external field, Eext and Bext, with the dipolar mo-
ments, p and m, induced in the CRs,31,34

p = �ee · Eext + �em · Bext,

m = �mm · Bext − �em
t · Eext, �2�

where �ee, �mm, and �em are the electric, magnetic, and mag-
netoelectric polarizability tensors, and the superscript t
means transpose operation. The constitutive tensors in Eq.
�1� can be derived from these polarizabilities and from the
lattice structure by applying a homogenization technique.

In what follows, different kinds of CRs will be named by
its cubic group symmetry followed by the acronym CR
�group-CR�. In order to design an isotropic CR, we have to
find suitable planar resonators and place them correctly over
the cube so as to fulfill the necessary symmetries. Obviously,
the planar resonators have to be invariant under certain sym-
metry transformations of the square. To classify all different
possibilities, a list of the symmetry subgroups of the square
is shown in Table I, as well as their geometrical representa-
tions, and some examples of planar resonators commonly
used in metamaterial design and obeying these symmetries.
This table also provides a systematic terminology for planar
resonators by using the symbol of the symmetry group fol-
lowed by the term SRR �group-SRR�. In what follows, we
will use the term SRR in a general sense covering any type
of geometry derived from the SRR and the omega particle.

By direct inspection on Fig. 2, it can be seen that any of
the five cubic point groups contains three twofold rotation
axes �180° rotations� parallel to the edges of the cube. Thus,
only resonators belonging to the last five rows of Table I are
appropriate for designing isotropic CRs. At this point, it may
be worth mentioning that Pendry’s SRRs3 as well as Omega
particles35 are not appropriate for such purpose because they
correspond to the C1-SRR and D1-SRR topologies. In sum-
mary, in order to get an isotropic CR, we have to choose six
identical SRRs pertaining to the classes C2-, D2-, C4-, or
D4-SRR and arrange them according to one of the cubic
point groups T, Td, Th, O, or Oh shown in Fig. 2.

Although all five cubic point groups mentioned above are
equally useful to achieve isotropic CRs, a specific choice
may strongly affect the properties of an isotropic metamate-
rial. For instance, using isotropic CRs of low symmetry may

FIG. 2. Objects with the symmetries of the five cubic point
groups.
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be quite advantageous since the electrical size of the CRs can
be made smaller. This fact can be justified in terms of the LC
circuit models for the SRRs5–8 because the effective capaci-
tances of low symmetry SRRs are usually higher than those
of high symmetry SRRs,8 thus providing a smaller resonance
frequency. Following these considerations, the best choice of
basis would be a T-CR made of six planar resonators of the
C2-SRR type. A good candidate among all possibilities is the
cube shown in Fig. 1�c� made of six nonbianisotropic SRRs
�NB-SRRs�,8,36 a configuration already proposed in Refs. 13
and 17. Furthermore, it was shown in Ref. 13 that this con-
figuration shows a bi-isotropic behavior, due to the lack of
inversion symmetry of the cubic arrangement. However,
sometimes, an effective isotropic medium without bi-
anisotropy ��, �=0� is desired. Since � and � are pseudoten-
sors, the invariance of the CR under inversion is required in
order to avoid such property. In this case, the lowest symme-
try group is the Th group. A CR invariant under the last group
of symmetry can be made by using planar resonators of the
D2-SRR type as, for instance, the symmetric SRR37 or the
modified double-slit broadside coupled SSR �BC-SRR�
shown in Fig. 1�d�.13 However, as will be shown in the fol-
lowing, such symmetry requirements can be relaxed if the
lattice symmetries are properly chosen.

C. Cubic lattices

Above findings give precise instructions for choosing
suitable geometries for isotropic metamaterial constitutive
elements. The next step is to create an isotropic metamaterial
with these elements. The cubic shape of the considered con-
stitutive elements suggests that the best periodical arrange-
ments are the simple cubic �sc�, body centered cubic �bcc�,
and face centered cubic �fcc� lattices shown in Fig. 3. All
these lattices obey the full symmetry group of the cube, Oh.
Therefore, the whole metamaterial �lattice plus basis� retains
the cubic point group symmetries and the macroscopic iso-
tropic behavior.

Although all previously mentioned lattices can provide
isotropic metamaterials, it is convenient to look deeply into
the possible structures because some particular choices may
offer interesting advantages. Regarding Fig. 3, a is the edge
size of the CR and b is the edge size of the cubic unit cell. In
order to describe CR interactions as dipole-dipole interac-
tions, b must be chosen much larger than a, so that the
metamaterial properties can be deduced from Eq. �2� and the
appropriate homogenization procedure. However, usually,
we are also interested in a high density of dipoles in order to
get a strong electromagnetic response. Therefore, b should

TABLE I. Classification of SRR types based on the symmetry subgroups of the square. The second
column shows Schöenflies’ notation and the generator of groups. The symbols of transformations are 1
=identity; 4=90° rotation; 2=180° rotation; −4=−90° rotation; mx, my =line reflections respect to the x and
y axes, respectively; mx,y, mx−y =line reflections respect to both diagonals of the square. Each group is
schematically represented by the objects in the second column which can be replaced by the planar resonators
shown in the third column.

SRR types Symmetry subgroups of the square Geometrical
representation

Examples of
resonators

C1-SRR C1 = {1}

D1-SRR

D1x = {1, mx}

D1y = {1, my}

D1,x,y = {1, mx,y}

D1,x,-y = {1, mx,-y}

C2-SRR C2 = {1, 2}

D2-SRR
D2x = D2y = {1, mx, my, 2}

D2xy = 2x yD = {1, mx,y, mx,-y, 2}

C4-SRR C4 = {1, 4, 2, -4}

D4-SRR D4 = {1, 4, 2, -4, mx, my, mx,y, mx,-y}
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be as small as possible. However, decreasing b may lead to a
failure of the aforementioned homogenization procedure.
However, in any case, the combination of a basis and a lat-
tice with the appropriate symmetries will provide an isotro-
pic metamaterial, regardless of the homogenization proce-
dure. Finally, there are some practical limitations to the
values that a and b can reach as, for instance, the obvious
inequality b�a, derived from the fact that CRs are supposed
to be impenetrable.

Additional limitations appear for each specific structure.
In the case of a sc lattice with T-, Td-, or O-CRs, the lack of
inversion symmetry implies that opposite sides of a CR are
not oriented in the same way. Thus, the constrain b�a is
necessary in order to avoid a mutual short circuit between
the SRRs of neighboring CRs. To allow the minimum dis-
tance b=a, the noncentrosymmetric CRs in the sc lattice
must be replaced by Th- or Oh-CRs, so that the SRRs on
contacting sides of neighboring CRs exactly overlap. In the
case of a bcc lattice, the contact between corners implies that
the inequality b�a must be fulfilled for any type of CR.
Finally, for the fcc lattice, the contact between edges of
neighboring CRs establishes the harder condition b�2a.

The particular case of an fcc lattice with the minimum cell
size, b=2a, deserves a specific analysis. When Th- or
Oh-CRs are used as the basis of the fcc lattice, the structure

turns into an sc lattice with the highest possible compactness,
i.e., b=a, because the holes between each eight neighboring
CRs have the same shape as the CRs forming the basis. The
case of an fcc lattice with a T-, Td-, or O-CR basis is even
more special and interesting because each hole exactly cor-
responds with the inversion of the CR of the basis. There-
fore, although the basis of the structure is not invariant under
inversion, the fcc structure is brought into coincidence with
itself by inversion centered at the center of a CR, followed
by a translation of length a through any of the cube axes.
Since the wavelength of the signal illuminating the structure
is supposed to be much larger than a, the system can be
considered as macroscopically invariant under inversion and,
therefore, any bi-isotropic behavior must disappear. Thus, we
conclude that a very interesting choice in order to obtain an
isotropic metamaterial is the fcc lattice with b=2a and with a
basis formed by T-CRs �example in Fig. 1�c�� because of its
high compactness, non-bi-isotropic macroscopic behavior,
and low degree of symmetry. It is worth recalling here that
T-CRs have the lowest symmetry among all the possibilities
shown in Fig. 2, which helps to reduce the electrical size of
the unit cell, as explained above.

III. RESONANCES AND POLARIZABILITIES OF CUBIC
RESONATORS

Until now, only the symmetry of CRs and cubic lattices
useful for isotropic periodic metamaterials were analyzed.
However, in order to have a complete characterization of the
metamaterial, polarizabilities and couplings between indi-
vidual SRRs must be considered. In dilute crystals, the ap-
proach of weak coupling between CRs, but strong coupling
between the SRRs of each CR, is valid. Then, the metama-
terial characterization involves two separate problems: ob-
taining the polarizability tensors in Eq. �2� for a single CR
and applying the appropriate homogenization procedure to
obtain the constitutive parameters for the whole structure.
For dense packages, the aforementioned approach is not
valid since couplings between SRRs of different CRs can be
stronger than SRR couplings inside each individual CR.
However, even in these cases, the analysis of the isolated CR
resonances and polarizabilities still provides useful informa-
tion on the behavior of the metamaterial. For instance, it
allows to elucidate if the coupling between SRRs in a prac-
tical low symmetry CR can be neglected or not. In case they
could be neglected, all the analysis in Sec. II B would be-
come irrelevant because the SRRs could be substituted by its
equivalent dipoles �as it was assumed in Refs. 14–16�, with-
out more considerations on the SRR structure. Therefore, the
analysis in this section is necessary in order to justify the
practical relevance of the analysis developed in Sec. II. Fur-
ther, in Sec. IV, an experimental validation of this analysis
will be provided.

Let us assume that the CR size is much smaller than the
operating wavelength. Thus, an RLC circuit model is valid
for describing the behavior of single Pendry’s SRRs,3 as well
as for any type of modified SRRs5–8 or omega particles.38

Furthermore, if the resonators are not too close �so that the
interaction energies are small with regard to the self-energy

FIG. 3. Cubic Bravais’ lattices. Their top views are also depicted
for the particular case of b=2a. Black and gray small cubes repre-
sent cubic resonators on successive planes.
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of each SRR�, then the CR can be considered as six RLC
circuits coupled through mutual impedances. The positive
directions of the electric currents on each loop are arbitrarily
defined in Fig. 4. The relation between currents and electro-
motive forces exciting the CR can be written as

Z · I = F , �3�

where Z is a 6�6 square impedance matrix, I is a column
matrix whose ith component is the current flowing over the
ith SRR, and F is a column matrix whose ith component is
the external electromotive force acting on the ith SRR. The
diagonal components of the impedance matrix are the self-
impedances of each SRR, i.e., Zii=R+ j�L+1 / �j�C�, with
R, L, and C being the resistance, self-inductance, and self-
capacitance of a single SRR.8 The nondiagonal components
Zij are the mutual impedances between the ith and jth SRRs.
From the reciprocity theorem,39 we know that the impedance
matrix must be symmetric, i.e., Zij =Zji. This reduces the
number of independent elements of Z to 21. This number can
be further reduced by applying the geometrical symmetries
of the CR, as shown in the next paragraph.

The application of any symmetry operation changes the
components of I according to the rule I�=S ·I, where S is the
corresponding operator of symmetry. It is well known that
any symmetry operation S of the cubic point groups can be
expressed as some combination of the three orthogonal four-
fold rotations and the inversion, whose matrix representa-
tions, in the six-dimensional space defined by I, are

4x 	 

1 0

0 1
0 0

0 0
0 − 1

− 1 0

0
1 0

0 1
0

� ,

4y 	 

0 0

1 0

0 1

0
1 0

0 1
0

0 − 1

− 1 0
0 0

� ,

4z 	 

0

0 − 1

− 1 0
0

1 0

0 1
0 0

0 0
1 0

0 1

� ,

− 1 	 

0 1

1 0
0 0

0
0 1

1 0
0

0 0
0 1

1 0

� . �4�

They are unitary matrices with the well known property
S−1=St. It can be straightforwardly demonstrated that F fol-
lows the same rule of transformation: F�=S ·F. Therefore,
both I and F can be considered as vectors. In what follows, I
and F will be called the “current” and the “excitation” vec-
tors, respectively. Therefore, the impedance matrix Z is a
second rank tensor, following the transformation rule Z�
=S ·Z ·St. If the CR remains invariant by the transformation
S, then

Z = S · Z · St. �5�

This equation gives some relations between the components
of Z, which can reduce the number of independent compo-
nents of Z.

Although the current vector I can be directly solved by
multiplying both sides of Eq. �3� by Z−1, in order to identify
the different resonances of the CR, it is convenient to expand
the solution in terms of the eigenvectors of Z. The eigen-
value problem corresponding to Eq. �3� is

Z · vi = zivi, �6�

where zi are the eigenvalues, vi the eigenvectors, and the
index i=1, . . . ,6. The impedance matrix Z can be expanded
in a sum of two terms as

Zij = �R + j�L +
1

j�C
�ij + Zij�1 − �ij� , �7�

where �ij is Kronecker’s delta. The first term is the self-
impedance of a single SRR multiplied by the identity, while
the second term is the symmetric matrix of mutual imped-
ances. These mutual impedances are purely imaginary num-
bers since, in the frame of a quasistatic model, they cannot
contain a resistive term. Thus, the second term in Eq. �7� is a
purely imaginary symmetrical matrix. Therefore, its eigen-
vectors can be chosen in such a way that they form a com-
plete and orthogonal basis that diagonalizes this matrix. Fur-
thermore, since the first summand in Eq. �7� is actually a
scalar, the eigenvectors of Zij are actually the same as those
of Zij�1-�ij�. Therefore, the eigenvectors of Z can be chosen
in such a way that they form an orthogonal basis for the
considered six-dimensional space. Thus, the current and ex-

FIG. 4. Definition of the sign of currents in the circuit model for
a 3D cubic magnetic resonator.
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citation vectors can be expanded as a summation of such
eigenvectors,

I = �
i

�I · vi�vi, F = �
i

�F · vi�vi. �8�

By substituting both expressions into Eq. �3� and applying
Eq. �6�, we get

I = �
i

F · vi

zi
vi. �9�

Therefore, both F and I can be expanded in a set of orthogo-
nal modes having mutually proportional excitation and cur-
rent vectors.

From Eq. �7�, we can also obtain information about the
structure of the eigenvalues zi. These eigenvalues must have
the form

zi��� = R + j�L +
1

j�C
+ zc,i��� = j�L�1 −

�0
2

�2 +
R

j�L

+
zc,i���

j�L
� , �10�

where �0 is the resonance frequency of an isolated SRR
��0

2=1 /LC�, and zc,i��� the eigenvalues of the second sum-
mand in Eq. �7�, which are related to the coupling between
SRRs. It can be seen in Eq. �9� that the ith mode resonates
when its eigenvalue approaches zero �zi�0�. Therefore, the
frequency of resonance of the ith mode is given by the rela-
tion zi��0,i��0. If losses and couplings between SRRs are
not too strong �R, zc,i� j�L�, the frequencies of resonance of
the CR can be approximated as

�0,i � �0 −
zc,i��0�

2jL
. �11�

In what follows, we will apply this equivalent circuit model
to the determination of the resonances and polarizabilities of
two CRs made from two well known SRRs: Pendry’s SRR3

and NB-SRR.8

A. Analysis of an anisotropic cube

Let us now consider the CR shown in Fig. 1�a�, made of
Pendry’s SRRs. In this section, we are going to get some
analytical approximation for its resonances and polarizabil-
ities. Note that the cube possesses inversion symmetry and,
thus, magnetoelectric coupling is forbidden, so that �em=0 in
Eq. �2�. It can also be seen by inspection that the considered
CR is invariant under the rotation 4y ·4x. By applying this
spatial symmetry, the impedance matrix is reduced to the
form

Z = 

Z11 Z12 Z13 Z14 − Z14 − Z13

Z12 Z11 Z14 Z13 − Z13 − Z14

Z13 Z14 Z11 Z12 − Z14 − Z13

Z14 Z13 Z12 Z11 − Z13 − Z14

− Z14 − Z13 − Z14 − Z13 Z11 Z12

− Z13 − Z14 − Z13 − Z14 Z12 Z11

� , �12�

where there are only four independent components. The cor-
responding eigenvalues and its orthonormal eigenvectors are
shown in Table II. It is worth noting that the eigenvectors can
be classified in even and odd modes: for even �odd� modes,
the currents I2n-1 and I2n are parallel �antiparallel�.

Once the eigenvalue problem is solved, the next step is to
write an explicit expression for the excitation vector F and
introduce this expression in Eq. �9�, in order to get the cur-
rents over the SRRs. To begin with, we will assume that the
CR is excited by a homogeneous external magnetic field
Bext= �Bx

ext ,By
ext ,Bz

ext�, and there is no external electric field.
Then, the excitation vector is written as

Fm = − j�A�Bx
ext,Bx

ext,By
ext,By

ext,Bz
ext,Bz

ext� , �13�

where A is the effective area of the SRR. By introducing Eq.
�13� into Eq. �9�, the current vector I is calculated. Finally,
the magnetic dipole components of the CR are obtained from
mx= �I1+ I2�A, my = �I3+ I4�A, and mz= �I5+ I6�A. The resulting
expression for the magnetic polarizability tensor is

TABLE II. Eigenvalues and a complete set of orthonormal
eigenvectors of the impedance matrix �Eq. �12�� corresponding to
anisotropic cubic resonators with symmetries −1 and 4y ·4x, as, for
instance, the structures shown in Figs. 1�a� and 1�b�.

Eigenvalues zi Eigenvectors vi

1

2
�−1,−1,1 ,1 ,0 ,0�

Even
modes
�magnetic�

Z11+Z12−Z13−Z14
1

2�3
�1,1 ,1 ,1 ,2 ,2�

Z11+Z12+2Z13+2Z14
1
�6

�−1,−1,−1,−1,1 ,1�

1

2�3
�1,−1,−2,2 ,1 ,−1�

Odd
modes
�electric�

Z11−Z12−Z13+Z14
1

2
�1,−1,0 ,0 ,−1 ,1�

Z11−Z12+2Z13−2Z14
1
�6

�−1,1 ,−1 ,1 ,−1 ,1�
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�mm = − j�A22

3
 1

Z11 + Z12 − Z13 − Z14�
2 − 1 1

− 1 2 1

1 1 2
�

+
1

Z11 + Z12 + 2Z13 + 2Z14�
1 1 − 1

1 1 − 1

− 1 − 1 1
�� . �14�

This magnetic polarizability tensor is anisotropic and exhib-
its two resonances, at those frequencies where Z11+Z12
−Z13−Z14�0 or Z11+Z12+2Z13+2Z14�0. Only the even
resonances of Table II appear in Eq. �14� because the exci-
tation vector and the odd eigenvectors are orthogonal, i.e.,
Fm ·vi

odd=0 in Eq. �9�. Just in the limit of no coupling be-
tween SRRs �Zij =0 for i� j�, both resonances converge to
the single SRR resonance and �mm becomes a scalar, as men-
tioned in Refs. 14–16. However, it will be shown in the Sec.
IV that this coupling cannot be neglected in most practical
configurations.

Apart from the magnetic excitation studied above, it is
well known that Pendry’s SRR can be excited by an external
electric field.5,6,40 Therefore, an electric response is also ex-
pected for this particular CR. The electric excitation of the
rings on the cube is sketched in Fig. 5. The external electric
field Eext can excite an SRR only if it has a nonvanishing
component contained in the plane of the particle and or-
thogonal to the imaginary line passing through the slits of the
rings.5,6,40 Therefore, only two SRRs are excited by each
Cartesian component of Eext. Thus, for an external and ho-
mogeneous electric field of arbitrary direction, the excitation
vector has the form

Fe � �Ez
ext,− Ez

ext,− Ex
ext,Ex

ext,− Ey
ext,Ey

ext� . �15�

Taking into account the sign of the charges induced over the
rings, it is clear that the electric dipole has to be proportional
to

p � �I3 − I4

I5 − I6

I2 − I1
� . �16�

The proportionality constants of Eq. �15� and �16� are given
in the Appendix, Eqs. �A2� and �A9�. Finally, from Eq. �A9�
of the Appendix, we get the following analytical formula for
the electric polarizability tensor:

�ee =
32def f

2

3j��2
 1

Z11 − Z12 − Z13 + Z14�
− 2 1 − 1

1 − 2 − 1

− 1 − 1 − 2
�

+
1

Z11 − Z12 + 2Z13 − 2Z14�
− 1 − 1 1

− 1 − 1 1

1 1 − 1
�� , �17�

where def f is an effective distance between the metal strips
on each SRR.5,6 Clearly, this electric polarizability tensor is
anisotropic and exhibits two resonances, at those frequencies
where Z11−Z12−Z13+Z14�0 or Z11−Z12+2Z13−2Z14�0.
Only the odd resonances of Table II appear in Eq. �17� be-
cause the excitation vector and the even eigenvectors are
orthogonal, i.e., Fe ·vi

even=0 in Eq. �9�.
In summary, it has been shown that the coupling between

the faces of the CR made of Pendry’s SRRs shown in Fig.
1�a� splits the original resonance of a single SRR in four new
resonances. Besides, both magnetic and electric polarizabil-
ity tensors are anisotropic, as can be seen from Eqs. �14� and
�17�. Finally, it is worth mentioning that the even modes can
also be called magnetic modes because they have a resonant
magnetic moment and can be only excited by an external
magnetic field but not by an external electric field. Similarly,
the odd modes are electric modes because they present a
resonant electric dipole, which can be only excited by an
external electric field. The reported conclusions are quite rel-
evant for our analysis because they show that a cubic ar-
rangement of Pendry’s SRRs will not be only anisotropic but
it will also show several different resonances around the iso-
lated SRR resonance, thus destroying any possibility of a
single-resonance Lorentzian behavior of the metamaterial.

B. Analysis of an isotropic cube

It was already shown in Sec. II B that, in order to ensure
an isotropic behavior, the CR has to be invariant at least
under the tetrahedron symmetry group T= ��1 ,4x ·4y ,4y ·4x��.
The T-CR shown in Fig. 1�c�, made of six NB-SRRs,8,13 is a
good example of particle obeying this symmetry. By using
the symmetry transformations and the rule �Eq. �5��, its im-
pedance matrix can be significantly reduced to

Z = 

Z11 Z12 Z13 − Z13 Z13 − Z13

Z12 Z11 − Z13 Z13 − Z13 Z13

Z13 − Z13 Z11 Z12 Z13 − Z13

− Z13 Z13 Z12 Z11 − Z13 Z13

Z13 − Z13 Z13 − Z13 Z11 Z12

− Z13 Z13 − Z13 Z13 Z12 Z11

� , �18�

where there are just three independent components. All ei-
genvalues and a complete set of orthonormal eigenvectors of

FIG. 5. Electric excitation of the cubic resonator made of Pen-
dry’s SRRs.
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this matrix are shown in Table III. If we compare Tables III
and II, we immediately find some similarities. In both cases,
the eigenvectors can be classified into even and odd types,
and the eigenvalues in Table III can be obtained from those
of Table II by making Z14=−Z13. Furthermore, the odd and
even subspaces are kept, and only the two subspaces of the
even eigenvectors are unified into a single subspace due to
the eigenvalue degeneration induced by the additional rota-
tion symmetry 4x ·4y.

Let us now analyze the resonances and polarizabilities of
the T-CR by following the procedure developed in the pre-
vious subsection. By considering a homogeneous external
magnetic excitation, the corresponding excitation vector �Eq.
�13�� can only excite the even modes, thus leading to the
isotropic magnetic polarizability tensor

�mm =
− 2j�A2

Z11 + Z12

1 0 0

0 1 0

0 0 1
� , �19�

which, in fact, corresponds to the substitution Z14=−Z13 in
Eq. �14�. The self-impedance in Eq. �19� is given by Z11
=R+ j�L+ �j�C�−1, with R, L, and C being the resistance,
self-inductance, and self-capacitance of a single NB-SRR.8

The mutual impedance in Eq. �19� can be approached as
Z12� j�M12, where M12 is the mutual inductance between
two NB-SRRs placed on opposite sides of the CR. This ap-
proximation is reasonable since the electric field is concen-
trated inside the gap of the NB-SRR, while the magnetic
field created by a NB-SRR spreads out in space. Using these
relations, the frequency of resonance of the CR can be cal-

culated as �res��C�M12+L��−1/2, while the magnetic polar-
izability tensor takes the form

�mm �
2�2CA2

1 − �2�L + M12�C + j�RC
1 0 0

0 1 0

0 0 1
� . �20�

This formula shows a Lorentzian-like magnetic response,
similar to that of the single planar NB-SRR but isotropic in
three dimensions.

With regard to the behavior of the considered CR under
an external electric excitation, since the NB-SRRs cannot be
excited by an external electric field,8 the present theory pre-
dicts the absence of any resonant response to this excitation
�of course, the CR will exhibit a nonresonant electric polar-
izability due to the static electric moments induced on each
ring, which is of no interest in the frame of the present dis-
cussion�. However, experiments reported in Ref. 13 have
shown that the considered CR exhibits a weak magnetoelec-
tric coupling at the same resonant frequency, �res= �C�M12

+L��−1/2, as in Eq. �20�. Therefore, this phenomenon does not
affect neither the isotropy nor the single-resonance behavior
of the considered CR. Since the tetrahedron symmetry group,
T, does not include the inversion transformation, this result is
not forbidden for T-CRs. Although the origin of this effect
will be qualitatively explained below in Sec. IV, it can be
advanced that it is basically due to a second order electric
interaction between SRRs, which is ignored in the equivalent
circuit approximation developed in this section. Actually, the
presence of this second order effect near the CR resonance
shows how important the analysis of the spatial symmetries
is in order to predict the behavior of metamaterial resonators:
it seems that any effect not forbidden by symmetry will ac-
tually appear in practice, regardless of the equivalent circuit
models. It is worth recalling here that this magnetoelectric
coupling disappears if the T-CRs are arranged in an fcc lat-
tice with b=2a, as explained at the end of Sec. II B.

IV. EXPERIMENTS

For the experimental verification of the theory developed
in the previous sections, some anisotropic and isotropic CRs
were manufactured. Each CR was inserted into a standard
WR430 waveguide, as shown in Fig. 6. The testing proce-
dure starts from the fact that the particle is isotropic if their
polarizability tensors are invariant by any rotation. There-
fore, all CRs were subjected to several rotations and the
transmission coefficient through the waveguide was mea-
sured using a network analyzer HP-8510. If the measured
CR were isotropic, then the measured transmission coeffi-
cient would remain invariant after rotations.

Namely, two anisotropic cubes made of Pendry’s SRRs
and omega particles and two isotropic cubes made of
C2-SRRs �actually NB-SRRs8� and C4-SRRs �see insets in
Fig. 7� were implemented. All SRRs were etched on Arlon
250-LX substrate with dielectric constant 	r=2.43, loss tan-
gent tan �
0.002, and thickness t=0.49 mm. In order to
check the similarity between the SRRs belonging to the same
CR, their resonance frequencies were measured by placing

TABLE III. Eigenvalues and a complete set of orthonormal
eigenvectors of the impedance matrix �Eq. �18�� corresponding to
isotropic cubic resonators symmetric under the tetrahedron group
T= ��1 ,4x ·4y ,4y ·4x��, as, for instance, the structure shown in Fig.
1�c�.

Eigenvalues zi Eigenvectors vi

1
�2

�0,0 ,1 ,1 ,0 ,0�

Even
modes

Z11+Z12
1
�2

�0,0 ,0 ,0 ,1 ,1�

1
�2

�1,1 ,0 ,0 ,0 ,0�

1

2�3
�1,−1,−2,2 ,1 ,−1�

Z11−Z12−2Z13

Odd
modes

1

2
�1,−1,0 ,0 ,−1 ,1�

Z11−Z12+4Z13
1
�6

�−1,1 ,−1 ,1 ,−1 ,1�

TOWARDS A SYSTEMATIC DESIGN OF ISOTROPIC BULK… PHYSICAL REVIEW B 76, 245115 �2007�

245115-9



each one in the E plane of the waveguide, obtaining the
following values: f0

Pendry’s SRR= �2.321±0.002� GHz, f0
�

= �2.216±0.002� GHz, f0
C4-SRR= �2.399±0.001� GHz, and

f0
NB-SRR= �2.385±0.002� GHz. These results show that sig-

nificant deviations from these values �of more than
0.002 GHz� in the measured resonances of the transmission
coefficients for the CRs must be interpreted as a resonance
splitting due to SRR couplings, and not due to fabrication
imprecision. The SRRs were assembled over a cube of iso-
tropic dielectric �ROHACELL 71 HF, 	r=1.07, tan �

0.0002� of size 2�2�2 cm3. More details on the prepa-
ration of the experiments are given in Ref. 41.

A. Anisotropic cubes

First, the CRs not satisfying the necessary spatial symme-
tries for isotropy were tested. Figure 7�a� shows the trans-
mission coefficient through the waveguide loaded with the
CR made of Pendry’s SRRs. Two observations are apparent:
there are three major resonance peaks and none of them stays
invariant under rotations of the cube. Therefore, this CR is
anisotropic, as theoretically predicted by the symmetry
theory in Sec. II B. However, the circuit model developed in
Sec. III A predicts the presence of four different resonances,
but not three, as can be observed in Fig. 7�a�. Although this
fourth resonance is not clearly visible in Fig. 7�a�, the dip at
the lowest frequency is split into two dips for the other dif-
ferent orientation shown in Ref. 42, thus recovering the
agreement with the theory. Furthermore, in Ref. 42, the na-
ture of each resonance is identified as electric or magnetic.

The cube composed of omega particles was also experi-
mentally tested. This cube has symmetry properties identical
as the cube made of Pendry’s SRR, i.e., it is invariant under
the inversion and the rotation 4y ·4x. The transmission coef-
ficient for this measurement is depicted in Fig. 7�b�, where
similar results as for the SRR cube can be observed. Namely,
the original resonance of a single omega particle now ap-
pears split in several resonances and the transmission coeffi-

cient changes for different orientations. However, the num-
ber of resonance dips in Fig. 7�b� is 5 instead of 4, as
previously predicted in Sec. III A. This failure of the model
can be attributed to a strong electric coupling between the
legs of two neighbors. In fact, it can be expected from the
CR depicted in Fig. 7�b� that the electric field between legs
of two omega particles on adjacent sides of the CR is com-
parable to the internal electric field in each omega particle.
Thus, the CR should be seen as an inseparable particle in-
stead of six RLC circuits, as assumed in Sec. III.

An important result of the reported measurements is that
the relative frequency deviations between the different reso-
nances of the CRs made of Pendry’s SRRs and omega par-
ticles �10% or more with regard to the central frequency� are
of the same order that the bandwidths reported for most SRR
or omega based negative-� metamaterials. Therefore, as ad-
vanced in Sec. III, it can be guessed that any metamaterial
made from such configurations will show multiple reso-

FIG. 6. �Color online� Experimental setup for checking the isot-
ropy of cubic resonators. In the illustration, a cubic resonator made
of Pendry’s SRR is placed inside a pair of standard waveguide-
coaxial transitions WR430 connected to a network analyzer HP-
8510-B. The transversal dimensions of the waveguide are 109
�55 mm2 and its frequency range is 1.7–2.6 GHz. The cube is
held by a piece of electromagnetically inert foam at an arbitrary
orientation.

FIG. 7. Transmission coefficient ��S21�� through a waveguide
containing a cubic resonator made of �a� Pendry’s SRRs, �b� Omega
particles, �c� C4-SRRs, or �d� C2-SRRs �or NB-SRR�. Solid line: the
particle is oriented with its axes �x ,y ,z� parallel to the waveguide
axes �X ,Y ,Z� shown in Fig. 6. Dashed line: the first orientation is
rotated by 45° along the Y axis. Dash-dot line: the first orientation is
rotated by 45° along the Z axis and 45° along the Y axis. The size of
all cubes is 2�2�2 cm3. Dimensions of Pendry’s SRRs: external
radius rext=7 mm, width of the strip w=1.25 mm, distance between
strips d=0.5 mm, and size of split gap g=1 mm. Dimensions of �:
rext=8.5 mm, w=1 mm, g=1 mm, and the length of “legs” l
=8 mm. Dimensions of C4-SRR: rext=9.25 mm, w=1.25 mm, d
=0.5 mm, and g=1.5 mm. Dimensions of C2-SRR: external radius
rext=7 mm, width of the strip w=1.25 mm, distance between strips
d=0.5 mm, and size of split gap g=1 mm.
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nances inside the expected negative-� frequency band, thus
destroying any single-resonance Lorentzian behavior.

B. Isotropic cubes

In order to show the usefulness of spatial symmetries to
provide isotropic resonators, the cubes made of C4-SRRs and
C2-SRRs �see insets in Figs. 7�c� and 7�d��, satisfying the
octahedron group O and the tetrahedron group T, respec-
tively, have been tested. As shown in Sec. II B, both cubes
are symmetric enough to be isotropic. The transmission co-
efficients for these CRs are shown in Figs. 7�c� and 7�d�. It
can be observed that the transmission does not depend on
their orientations, thus demonstrating their isotropy. Besides,
it can be seen that only one peak appear in both measure-
ments, as predicted in Sec. III B. It is worth noting that a
similar result will be obtained for any CR satisfying any one
of the five cubic symmetry point groups �T, Th, Td, O, and
Oh�.

The cubes analyzed in this section have no inversion sym-
metry and, as mentioned at the end of Sec. III, they could
exhibit a bi-isotropic behavior. However, from the experi-
mental curves, it is impossible to see whether the analyzed
CRs are bi-isotropic or not. To examine this possibility, elec-
tromagnetic simulations of a square waveguide loaded with
T-CRs were made. The input port was fed by the TE10 mode,
while the TE01 mode with orthogonal polarization was mea-
sured on the output port. The resulting cross-polarization
transmission coefficient is shown in Fig. 8. The nonzero
transmission means that the incident electric field can excite
not only a parallel electric dipole but also a parallel magnetic
dipole. From reciprocity, it is also clear that an incident mag-
netic field can excite both magnetic and electric dipoles par-
allel to the exciting field. This result clearly shows the bi-
isotropic behavior of the C2-SRR cube. In order to show that

the bi-isotropy can be avoided by including the inversion
symmetry in the configuration, a similar simulation was car-
ried out for the Th-CR shown in Fig. 1�d�, already proposed
in,13 which possesses an inversion symmetry. The transmis-
sion coefficient, not depicted here, was almost zero and of
the same order as the transmission through the waveguide
without any resonator, thus showing that this last configura-
tion is not bi-isotropic.

As already reported, the bi-isotropy of the T-CR cannot be
explained by the circuit model proposed in Sec. III. The ex-
planation of this effect seems to rely on the electric coupling
between the edges of two SRR on adjacent faces of the cube.
To understand this in a qualitative way, let us assume that the
cube is driven by an external magnetic field feeding only two
resonators in the cube, as shown in Fig. 9. This figure also
depicts the current and corresponding charges induced by the
external field on each NB-SRR. Due to the inversion sym-
metry of the NB-SRR, the electric dipole generated by the
excited resonators is zero.8 However, Fig. 9 also shows how
the induced resonant charges polarize the other �not excited�
rings. These are polarized in such a way that the CR acquires
a net electric dipole, as sketched in the figure. This dipole
does not excite an extra net current on the NB-SRR since the
polarization charge symmetrically flows on both halves of
the resonator. Therefore, this effect is not taken into account
by the circuit model reported in Sec. III. However, it intro-
duces a nonzero magnetoelectric polarizability that cannot be
extracted from that model. According to the above explana-
tion, it is expected that magnetoelectic coupling will increase
if the electric coupling between the edges of neighboring
resonators grows. To check this hypothesis, the cross-
polarized transmission was also computed for square rings
�see dashed line in Fig. 8�. The enhancement of the magne-
toelectric coupling can be clearly observed in this case.

At the end of Sec. II, it was mentioned that this bi-
isotropic behavior would disappear in an fcc cubic lattice
with b=2a �see Fig. 3�. In that section, this behavior was
predicted on the basis of the particular symmetry of this spe-
cific lattice. The illustration in Fig. 9 of the bi-isotropy of an
isolated CR made of six identical NB-SRRs also provides a
qualitative physical interpretation of such result: if additional

FIG. 8. Simulated transmission coefficient ��S21�� through the
cross polarization waveguide setup filled by T-CRs made of circular
�solid line� and square NB-SRRs �dashed line�. Dimensions of the
circular NB-SRR: external diameter 2rext=20 mm, width of the
strip w=2 mm, distance between strips d=1 mm, and size of split
gap g=1.6 mm. The square NB-SRRs have similar dimensions and
the same external perimeter. Cube edge was 24 mm long.

FIG. 9. Illustration of the bi-isotropic behavior of a T-CR made
of NB-SRRs driven by an external magnetic field.
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SRRs were added to Fig. 9 in order to make an fcc cubic
lattice, it becomes apparent that the induced charges on the
nonresonant additional SRRs will cancel the total electric
dipole shown in the figure.

V. CONCLUSIONS

A systematic approach to the design of isotropic magnetic
metamaterials by using isotropic cubic magnetic resonators
in a cubic lattice has been developed. For this purpose, cubic
magnetic resonators obeying some cubic point groups of
symmetry �T, Td, Th, O, or Oh� placed in cubic Bravais’
lattice �sc, bcc, or fcc� were analyzed. Special care has been
taken in the study of the symmetry of the constitutive ele-
ments �also called cubic resonators or CRs�. For practical
reasons, CRs made of six modified SRRs assembled over the
surface of a cube were considered. The connection between
the orientations of these SRRs over the cube and the cubic
point groups of symmetry has been analyzed. Starting from
this analysis, some particular examples of anisotropic and
isotropic CRs were analyzed, manufactured, and measured.
It was analytically and experimentally shown that the lack of
the necessary symmetry leads to an anisotropic response. In
experiments, the transmission through a waveguide loaded
with the manufactured CRs was measured, getting a strong
dependence of this parameter on the orientation for aniso-
tropic CRs, while the transmission was invariant with respect
to the orientation for isotropic CRs. Furthermore, the split-
ting of the isolated SRR resonances into several resonances
was observed in anisotropic CRs. This effect is absent in
isotropic CRs, which always show a single resonance. Most
of these effects were theoretically explained by using an
equivalent circuit model, which takes into account the elec-
tromagnetic couplings between the SRRs making the ana-
lyzed CRs.

From a practical standpoint, we have found that using
some low symmetry CRs, pertaining to the tetrahedral group
T or Th, placed in a cubic Bravais lattice is enough to provide
isotropy in three dimensions. Using CRs with lower symme-
try results in an anisotropic behavior, even if the dipole rep-
resentation of the SRRs suggests an isotropic behavior. In
general, using cubic resonators pertaining to a symmetry
group which does not include inversion �such as the symme-
try group T� produces a bi-isotropic behavior, even if the
isolated SRRs making the metamaterial do not present mag-
netoelectric coupling. However, this bi-isotropy can be
avoided by a proper choice of the lattice. In particular, it has
been shown that cubic resonators pertaining to the aforemen-
tioned T group placed in an fcc lattice with the appropriate
periodicity can produce a purely magnetic isotropic behavior.

We hope that the reported results will pave the way to the
design of isotropic three-dimensional periodic metamaterials
with a resonant magnetic response, including negative per-
meability and left-handed metamaterials.
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APPENDIX: ELECTRIC EXCITATION OF THE CUBIC
RESONATOR MADE OF PENDRY’S SPLIT RING

RESONATOR

Let us assume a single SRR placed in the xy plane with its
two slits along the x axis. The electromotive force can be
approximated by averaging the path integral of the external
electric field through the gap along the circumference of the
particle, so that

emf = �Eext · def f��� = 2Ey
extdef f

1

�
�

0

�

cos� − �/2�d

=
4

�
def fEy

ext. �A1�

It is worth noting that the two halves of the SRR are polar-
ized in the same direction,5,6 so that it justifies the factor 2 in
front of the integral and its integration domain �0,��. Now,
let us generalize the electromotive force of Eq. �A1� to get
the “excitation vector” for the CR made of Pendry’s SRRs
shown in Fig. 1�a�. Taking into account the sketch of the
excitation shown in Fig. 5, it easy to get the following elec-
tric excitation vector:

Fe =
4

�
def f�Ez

ext,− Ez
ext,− Ex

ext,Ex
ext,− Ey

ext,Ey
ext� . �A2�

In what follows, for simplicity, the superscript ext will be
avoided. By introducing Eq. �A2� in Eq. �9�, we get the
associated currents

�
I1

I2

I3

I4

I5

I6

� =

4

3�
def f

Z11 − Z12 − Z13 + Z14�
Ex + Ey + 2Ez

− Ex − Ey − 2Ez

− 2Ex + Ey − Ez

2Ex − Ey + Ez

Ex − 2Ey − Ez

− Ex + 2Ey + Ez

�
+

4

3�
def f

Z11 − Z12 + 2Z13 − 2Z14�
− Ex − Ey + Ez

Ex + Ey − Ez

− Ex − Ey + Ez

Ex + Ey − Ez

− Ex − Ey + Ez

Ex + Ey − Ez

� .

�A3�

The electric dipole for a single SRR can be expressed in
terms of a linear charge density � as5,6
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py = 2�r0def f�
0

�

cos� − �/2�d = 4�r0def f , �A4�

where def f is an effective distance between the two metallic
strips forming the SRR. The charge density on the inner, Ii,
and outer rings, Io, of the SRR can be calculated by means of
the charge conservation law as follows:

dIi,o

d�
= j�r�i,0 ⇒ �i,0 =

1

j�r

dIi,o

d�
. �A5�

Since the SRR size is much smaller than one wavelength, we
can suppose a linear variation of Ii,o respect to the angle �,
taking its maximum value, I, at the center of the metal strip
and zero at its ends, as in Refs. 4 and 5. Then,

��� =
1

j�r

�I�
�

. �A6�

Although Ii and Io are not uniform through �, the sum of
both, Ii+ Io, is approximately constant and equal to the cur-
rent I, which is actually the effective current associated with
the averaged loop. By Eqs. �A4� and �A6�, we obtain

�py� =
4def f

j��
�I� . �A7�

Now, we can calculate the total electric moment of the SRR
cube by adding the six moments. By considering Eq. �A7�
and taking into account the signs of the charges shown in
Fig. 5, we obtain the electric dipole

p =
4def f

j�� �I3 − I4

I5 − I6

I2 − I1
� . �A8�

Finally, by substituting the currents of Eq. �A3� into Eq.
�A8�, we get the electric dipole in terms of the components
of the external electric field,

p =
32def f

2

3j��2
 1

Z11 − Z12 − Z13 + Z14�
− 2Ex + Ey − Ez

Ex − 2Ey − Ez

− Ex − Ey − 2Ez
�

+
1

Z11 − Z12 + 2Z13 − 2Z14�
− Ex − Ey + Ez

− Ex − Ey + Ez

Ex + Ey − Ez
�� . �A9�
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