3,885 research outputs found

    Ion-ion dynamic structure factor, acoustic modes and equation of state of two-temperature warm dense aluminum

    Full text link
    The ion-ion dynamical structure factor and the equation of state of warm dense aluminum in a two-temperature quasi-equilibrium state, with the electron temperature higher than the ion temperature, are investigated using molecular-dynamics simulations based on ion-ion pair potentials constructed from a neutral pseudoatom model. Such pair potentials based on density functional theory are parameter-free and depend directly on the electron temperature and indirectly on the ion temperature, enabling efficient computation of two-temperature properties. Comparison with ab initio simulations and with other average-atom calculations for equilibrium aluminum shows good agreement, justifying a study of quasi-equilibrium situations. Analyzing the van Hove function, we find that ion-ion correlations vanish in a time significantly smaller than the electron-ion relaxation time so that dynamical properties have a physical meaning for the quasi-equilibrium state. A significant increase in the speed of sound is predicted from the modification of the dispersion relation of the ion acoustic mode as the electron temperature is increased. The two-temperature equation of state including the free energy, internal energy and pressure is also presented

    Capability of Cherenkov Telescopes to Observe Ultra-fast Optical Flares

    Full text link
    The large optical reflector (~ 100 m^2) of a H.E.S.S. Cherenkov telescope was used to search for very fast optical transients of astrophysical origin. 43 hours of observations targeting stellar-mass black holes and neutron stars were obtained using a dedicated photometer with microsecond time resolution. The photometer consists of seven photomultiplier tube pixels: a central one to monitor the target and a surrounding ring of six pixels to veto background events. The light curves of all pixels were recorded continuously and were searched offline with a matched-filtering technique for flares with a duration of 2 us to 100 ms. As expected, many unresolved (500 us) background events originating in the earth's atmosphere were detected. In the time range 3 to 500 us the measurement is essentially background-free, with only eight events detected in 43 h; five from lightning and three presumably from a piece of space debris. The detection of flashes of brightness ~ 0.1 Jy and only 20 us duration from the space debris shows the potential of this setup to find rare optical flares on timescales of tens of microseconds. This timescale corresponds to the light crossing time of stellar-mass black holes and neutron stars.Comment: Accepted for publication in Astroparticle Physics, 8 pages, 9 figures, 1 tabl

    Decrumpling membranes by quantum effects

    Full text link
    The phase diagram of an incompressible fluid membrane subject to quantum and thermal fluctuations is calculated exactly in a large number of dimensions of configuration space. At zero temperature, a crumpling transition is found at a critical bending rigidity 1/αc1/\alpha_{\rm c}. For membranes of fixed lateral size, a crumpling transition occurs at nonzero temperatures in an auxiliary mean field approximation. As the lateral size L of the membrane becomes large, the flat regime shrinks with 1/lnL1/\ln L.Comment: 9 pages, 4 figure

    Precision preparation of strings of trapped neutral atoms

    Get PDF
    We have recently demonstrated the creation of regular strings of neutral caesium atoms in a standing wave optical dipole trap using optical tweezers [Y. Miroshnychenko et al., Nature, in press (2006)]. The rearrangement is realized atom-by-atom, extracting an atom and re-inserting it at the desired position with sub-micrometer resolution. We describe our experimental setup and present detailed measurements as well as simple analytical models for the resolution of the extraction process, for the precision of the insertion, and for heating processes. We compare two different methods of insertion, one of which permits the placement of two atoms into one optical micropotential. The theoretical models largely explain our experimental results and allow us to identify the main limiting factors for the precision and efficiency of the manipulations. Strategies for future improvements are discussed.Comment: 25 pages, 18 figure

    Current-voltage correlations in interferometers

    Full text link
    We investigate correlations of current at contacts and voltage fluctuations at voltage probes coupled to interferometers. The results are compared with correlations of current and occupation number fluctuations at dephasing probes. We use a quantum Langevin approach for the average quantities and their fluctuations. For higher order correlations we develop a stochastic path integral approach and find the generating functions of voltage or occupation number fluctuations. We also derive a generating function for the joint distribution of voltage or occupation number at the probe and current fluctuations at a terminal of a conductor. For energy independent scattering we found earlier that the generating function of current cumulants in interferometers with a one-channel dephasing or voltage probe are identical. Nevertheless, the distribution function for voltage and the distribution function for occupation number fluctuations differ, the latter being broader than that of former in all examples considered here.Comment: 23 pages, 10 figures, minor changes, additional appendix, added reference

    Adiabatic Quantum State Manipulation of Single Trapped Atoms

    Get PDF
    We use microwave induced adiabatic passages for selective spin flips within a string of optically trapped individual neutral Cs atoms. We position-dependently shift the atomic transition frequency with a magnetic field gradient. To flip the spin of a selected atom, we optically measure its position and sweep the microwave frequency across its respective resonance frequency. We analyze the addressing resolution and the experimental robustness of this scheme. Furthermore, we show that adiabatic spin flips can also be induced with a fixed microwave frequency by deterministically transporting the atoms across the position of resonance.Comment: 4 pages, 4 figure

    Pair creation of black holes joined by cosmic strings

    Get PDF
    We argue that production of charged black hole pairs joined by a cosmic string in the presence of a magnetic field can be analyzed using the Ernst metric. The effect of the cosmic string is to pull the black holes towards each other, opposing to the background field. An estimation of the production rate using the Euclidean action shows that the process is suppressed as compared to the formation of black holes without strings.Comment: 7 pages, LaTeX. Minor typos corrected

    K+ and K- production in heavy-ion collisions at SIS-energies

    Full text link
    The production and the propagation of K+ and of K- mesons in heavy-ion collisions at beam energies of 1 to 2 AGeV have systematically been investigated with the Kaon Spectrometer KaoS at the SIS at the GSI. The ratio of the K+ production excitation function for Au+Au and for C+C reactions increases with decreasing beam energy, which is expected for a soft nuclear equation-of-state. At 1.5 AGeV a comprehensive study of the K+ and of the K- emission as a function of the size of the collision system, of the collision centrality, of the kaon energy, and of the polar emission angle has been performed. The K-/K+ ratio is found to be nearly constant as a function of the collision centrality. The spectral slopes and the polar emission patterns are different for K- and for K+. These observations indicate that K+ mesons decouple earlier from the reaction zone than K- mesons.Comment: invited talk given at the SQM2003 conference in Atlantic Beach, USA (March 2003), to be published in Journal of Physics G, 10pages, 7 figure

    HT-Phenotyping methods for yield parameters in grapevine

    Get PDF
    corecore