1,753 research outputs found

    Face the Music and Glance: How Nonverbal Behaviour Aids Human Robot Relationships Based in Music

    Get PDF
    It is our hypothesis that improvised musical interaction will be able to provide the extended engagement often failing others during long term Human Robot Interaction (HRI) trials. Our previous work found that simply framing sessions with their drumming robot Mortimer as social interactions increased both social presence and engagement, two factors we feel are crucial to developing and maintaining a positive and meaningful relationship between human and robot. For this study we investigate the inclusion of the additional social modalities, namely head pose and facial expression, as nonverbal behaviour has been shown to be an important conveyor of information in both social and musical contexts. Following a 6 week experimental study using automatic behavioural metrics, results demonstrate those subjected to nonverbal behaviours not only spent more time voluntarily with the robot, but actually increased the time they spent as the trial progressed. Further, that they interrupted the robot less during social interactions and played for longer uninterrupted. Conversely, they also looked at the robot less in both musical and social contexts. We take these results as support for open ended musical activity providing a solid grounding for human robot relationships and the improvement of this by the inclusion of appropriate nonverbal behaviours

    Interference effects in the photorecombination of argonlike Sc3+ ions: Storage-ring experiment and theory

    Full text link
    Absolute total electron-ion recombination rate coefficients of argonlike Sc3+(3s2 3p6) ions have been measured for relative energies between electrons and ions ranging from 0 to 45 eV. This energy range comprises all dielectronic recombination resonances attached to 3p -> 3d and 3p -> 4s excitations. A broad resonance with an experimental width of 0.89 +- 0.07 eV due to the 3p5 3d2 2F intermediate state is found at 12.31 +- 0.03 eV with a small experimental evidence for an asymmetric line shape. From R-Matrix and perturbative calculations we infer that the asymmetric line shape may not only be due to quantum mechanical interference between direct and resonant recombination channels as predicted by Gorczyca et al. [Phys. Rev. A 56, 4742 (1997)], but may partly also be due to the interaction with an adjacent overlapping DR resonance of the same symmetry. The overall agreement between theory and experiment is poor. Differences between our experimental and our theoretical resonance positions are as large as 1.4 eV. This illustrates the difficulty to accurately describe the structure of an atomic system with an open 3d-shell with state-of-the-art theoretical methods. Furthermore, we find that a relativistic theoretical treatment of the system under study is mandatory since the existence of experimentally observed strong 3p5 3d2 2D and 3p5 3d 4s 2D resonances can only be explained when calculations beyond LS-coupling are carried out.Comment: 11 pages, 7 figures, 3 tables, Phys. Rev. A (in print), see also: http://www.strz.uni-giessen.de/~k

    1D Aging

    Full text link
    We derive exact expressions for a number of aging functions that are scaling limits of non-equilibrium correlations, R(tw,tw+t) as tw --> infinity with t/tw --> theta, in the 1D homogenous q-state Potts model for all q with T=0 dynamics following a quench from infinite temperature. One such quantity is (the two-point, two-time correlation function) when n/sqrt(tw) --> z. Exact, closed-form expressions are also obtained when one or more interludes of infinite temperature dynamics occur. Our derivations express the scaling limit via coalescing Brownian paths and a ``Brownian space-time spanning tree,'' which also yields other aging functions, such as the persistence probability of no spin flip at 0 between tw and tw+t.Comment: 4 pages (RevTeX); 2 figures; submitted to Physical Review Letter

    Nuclear dependence of the transverse single-spin asymmetry in the production of charged hadrons at forward rapidity in polarized p+pp+p, p+p+Al, and p+p+Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Get PDF
    We report on the nuclear dependence of transverse single-spin asymmetries (TSSAs) in the production of positively-charged hadrons in polarized p+pp^{\uparrow}+p, p+p^{\uparrow}+Al and p+p^{\uparrow}+Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV. The measurements have been performed at forward rapidity (1.4<η<2.41.4<\eta<2.4) over the range of 1.8<pT<7.01.8<p_{T}<7.0 GeV/c/c and 0.1<xF<0.20.1<x_{F}<0.2. We observed a positive asymmetry ANA_{N} for positively-charged hadrons in \polpp collisions, and a significantly reduced asymmetry in pp^{\uparrow}+AA collisions. These results reveal a nuclear dependence of charged hadron ANA_N in a regime where perturbative techniques are relevant. These results provide new opportunities to use \polpA collisions as a tool to investigate the rich phenomena behind TSSAs in hadronic collisions and to use TSSA as a new handle in studying small-system collisions.Comment: 303 authors from 66 institutions, 9 pages, 2 figures, 1 table. v1 is version accepted for publication in Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Nuclear dependence of the transverse-single-spin asymmetry for forward neutron production in polarized pp++AA collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Get PDF
    During 2015 the Relativistic Heavy Ion Collider (RHIC) provided collisions of transversely polarized protons with Au and Al nuclei for the first time, enabling the exploration of transverse-single-spin asymmetries with heavy nuclei. Large single-spin asymmetries in very forward neutron production have been previously observed in transversely polarized pp++pp collisions at RHIC, and the existing theoretical framework that was successful in describing the single-spin asymmetry in pp++pp collisions predicts only a moderate atomic-mass-number (AA) dependence. In contrast, the asymmetries observed at RHIC in pp++AA collisions showed a surprisingly strong AA dependence in inclusive forward neutron production. The observed asymmetry in pp++Al collisions is much smaller, while the asymmetry in pp++Au collisions is a factor of three larger in absolute value and of opposite sign. The interplay of different neutron production mechanisms is discussed as a possible explanation of the observed AA dependence.Comment: 315 authors, 8 pages, 4 figures, 1 table. v2 is version accepted for publication in Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore