118 research outputs found

    Validity and Reliability of a New Specific Parkour Test : Physiological and Performance Responses

    Get PDF
    Main aim of this study was examining validity and reliability of using a new specific Parkour repeated sprint ability test (SPRSA) for assessing repeated sprint ability while facing obstacles and establishing between-day reliability and sensitivity of SPRSA related to its physiological and performance responses. Thirteen high-level traceurs (three females) performed in random order and twice eight tests for assessing a total of 23 variables: SPRSA (a typical maximal-speed shuttle run interspersed with four Parkour competition-common fundamentals) and seven established fitness tests, core stability, hand-grip, vertical-jump, long-jump, pull-up, 300-m shuttle run (as a field test for anaerobic capacity), and Leger test. Except for muscular elasticity index of vertical jump test (intra-class Correlation Coefficient model 3,1 [ICC3,1] = 0.54 [fair]), fitness tests' ICC3,1s resulted excellent (ICC3,1: 0.93-1.00). SPRSA total time and time of its fastest sprint (SPRSA peak time) were significantly correlated with the majority of core stability (r: -0.79 to 0.59; P < 0.01-0.05), jumping (r: -0.78 to 0.67; P < 0.01-0.05), pull-up tests (r: -0.86; P < 0.01), 300-m shuttle run test total time (r: 0.77-0.82; P < 0.01), and Leger test-estimated VO2 max (r: -0.78; P < 0.01). Principal component analysis (PCA) of the 23 variables led to extraction of four significant components (each due to different variables' combinations), which explained 90.2% of 23 variables' total variance. SPRSA (i.e., total and peak time) showed high reliability (ICC3,1: 0.991-0.998 and standard-error-of-measurement %: 0.07-0.32). Finally, SPRSA showed high sensitivity (smallest-worthwhile-change %: 0.29-0.68). Considering its excellent logical and strong ecological validity, SPRSA may serve as a valid specific field test for Parkour sport. In addition, thanks to its high reliability and sensitivity, this test is suitable for monitoring, evaluating, and programming training processes for Parkour practitioners in repeated sprint ability involving crossing obstacles

    External Responsiveness of the SuperOpTM Device to Assess Recovery After Exercise : A Pilot Study

    Get PDF
    Post-exercise recovery is a complex process involving a return of performance and a physiological or perceptual feeling close to pre-exercise status. The hypothesis of this study is that the device investigated here is effective in evaluating the recovery state of professional cyclists in order to plan effective training. Ten professional male cyclists belonging to the same team were enrolled in this study. Participants performed a 7-day exercise program [D1, D4, and D7: low-intensity training; D2 and D5: passive recovery; D3: maximum oxygen consumption (VO2Max) test (for maximum mechanical power assessment only); and D6: constant load test]. During the week of monitoring, each morning before getting up, the device assessed each participant's so-called Organic Readiness {OR [arbitrary unit (a.u.)]}, based on blood pressure (BP), heart rate (HR), features of past exercise session, and following self-perceived condition. Based on its readings and algorithm, the device graphically displayed four different colors/values, indicating general exercise recommendations: green/3 = \u201cyou can train hard,\u201d yellow/2 = \u201cyou can train averagely,\u201d orange/1 = \u201cyou can train lightly,\u201d or red/0 = \u201cyou should recover passively.\u201d During the week of research, morning OR values and Bonferroni post-hoc comparisons showed significant differences between days and, namely, values (1) D2 (after low intensity training) was higher than D4 (after VO2Max test; P = 0.033 and d = 1.296) and (2) D3 and D6 (after passive recovery) were higher than D4 (after VO2Max test; P = 0.006 and d = 2.519) and D5 (after low intensity training; P = 0.033 and d = 1.341). The receiver operating characteristic analysis area under curve (AUC) recorded a result of 0.727 and could differentiate between D3 and D4 with a sensitivity and a specificity of 80%. Preliminarily, the device investigated is a sufficiently effective and sensitive/specific device to assess the recovery state of athletes in order to plan effective training

    Evidence of a metabolic memory to early-life dietary restriction in male C57BL/6 mice

    Get PDF
    <p>Background: Dietary restriction (DR) extends lifespan and induces beneficial metabolic effects in many animals. What is far less clear is whether animals retain a metabolic memory to previous DR exposure, that is, can early-life DR preserve beneficial metabolic effects later in life even after the resumption of ad libitum (AL) feeding. We examined a range of metabolic parameters (body mass, body composition (lean and fat mass), glucose tolerance, fed blood glucose, fasting plasma insulin and insulin-like growth factor 1 (IGF-1), insulin sensitivity) in male C57BL/6 mice dietary switched from DR to AL (DR-AL) at 11 months of age (mid life). The converse switch (AL-DR) was also undertaken at this time. We then compared metabolic parameters of the switched mice to one another and to age-matched mice maintained exclusively on an AL or DR diet from early life (3 months of age) at 1 month, 6 months or 10 months post switch.</p> <p>Results: Male mice dietary switched from AL-DR in mid life adopted the metabolic phenotype of mice exposed to DR from early life, so by the 10-month timepoint the AL-DR mice overlapped significantly with the DR mice in terms of their metabolic phenotype. Those animals switched from DR-AL in mid life showed clear evidence of a glycemic memory, with significantly improved glucose tolerance relative to mice maintained exclusively on AL feeding from early life. This difference in glucose tolerance was still apparent 10 months after the dietary switch, despite body mass, fasting insulin levels and insulin sensitivity all being similar to AL mice at this time.</p> <p>Conclusions: Male C57BL/6 mice retain a long-term glycemic memory of early-life DR, in that glucose tolerance is enhanced in mice switched from DR-AL in mid life, relative to AL mice, even 10 months following the dietary switch. These data therefore indicate that the phenotypic benefits of DR are not completely dissipated following a return to AL feeding. The challenge now is to understand the molecular mechanisms underlying these effects, the time course of these effects and whether similar interventions can confer comparable benefits in humans.</p&gt

    Novel Protein Kinase Signaling Systems Regulating Lifespan Identified by Small Molecule Library Screening Using Drosophila

    Get PDF
    Protein kinase signaling cascades control most aspects of cellular function. The ATP binding domains of signaling protein kinases are the targets of most available inhibitors. These domains are highly conserved from mammals to flies. Herein we describe screening of a library of small molecule inhibitors of protein kinases for their ability to increase Drosophila lifespan. We developed an assay system which allowed screening using the small amounts of materials normally present in commercial chemical libraries. The studies identified 17 inhibitors, the majority of which targeted tyrosine kinases associated with the epidermal growth factor receptor (EGFR), platelet-derived growth factor (PDGF)/vascular endothelial growth factor (VEGF) receptors, G-protein coupled receptor (GPCR), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), the insulin and insulin-like growth factor (IGFI) receptors. Comparison of the protein kinase signaling effects of the inhibitors in vitro defined a consensus intracellular signaling profile which included decreased signaling by p38MAPK (p38), c-Jun N-terminal kinase (JNK) and protein kinase C (PKC). If confirmed, many of these kinases will be novel additions to the signaling cascades known to regulate metazoan longevity

    Evidence for Ξ½ΞΌβ†’Ξ½Ο„\nu_\mu \to \nu_\tau appearance in the CNGS neutrino beam with the OPERA experiment

    Full text link
    The OPERA experiment is designed to search for Ξ½ΞΌβ†’Ξ½Ο„\nu_{\mu} \rightarrow \nu_{\tau} oscillations in appearance mode i.e. through the direct observation of the Ο„\tau lepton in Ξ½Ο„\nu_{\tau} charged current interactions. The experiment has taken data for five years, since 2008, with the CERN Neutrino to Gran Sasso beam. Previously, two Ξ½Ο„\nu_{\tau} candidates with a Ο„\tau decaying into hadrons were observed in a sub-sample of data of the 2008-2011 runs. Here we report the observation of a third Ξ½Ο„\nu_\tau candidate in the Ο„βˆ’β†’ΞΌβˆ’\tau^-\to\mu^- decay channel coming from the analysis of a sub-sample of the 2012 run. Taking into account the estimated background, the absence of Ξ½ΞΌβ†’Ξ½Ο„\nu_{\mu} \rightarrow \nu_{\tau} oscillations is excluded at the 3.4 Οƒ\sigma level.Comment: 9 pages, 5 figures, 1 table

    Age- and calorie-independent life span extension from dietary restriction by bacterial deprivation in Caenorhabditis elegans

    Get PDF
    Background: Dietary restriction (DR) increases life span and delays age-associated disease in many organisms. The mechanism by which DR enhances longevity is not well understood. Results: Using bacterial food deprivation as a means of DR in C. elegans, we show that transient DR confers long-term benefits including stress resistance and increased longevity. Consistent with studies in the fruit fly and in mice, we demonstrate that DR also enhances survival when initiated late in life. DR by bacterial food deprivation significantly increases life span in worms when initiated as late as 24 days of adulthood, an age at which greater than 50% of the cohort have died. These survival benefits are, at least partially, independent of food consumption, as control fed animals are no longer consuming bacterial food at this advanced age. Animals separated from the bacterial lawn by a barrier of solid agar have a life span intermediate between control fed and food restricted animals. Thus, we find that life span extension from bacterial deprivation can be partially suppressed by a diffusible component of the bacterial food source, suggesting a calorie-independent mechanism for life span extension by dietary restriction. Conclusion: Based on these findings, we propose that dietary restriction by bacterial deprivation increases longevity in C. elegans by a combination of reduced food consumption and decreased food sensing

    Association of plasma microRNA expression with age, genetic background and functional traits in dairy cattle

    Get PDF
    Abstract A number of blood circulating microRNAs (miRNAs) are proven disease biomarkers and have been associated with ageing and longevity in multiple species. However, the role of circulating miRNAs in livestock species has not been fully studied. We hypothesise that plasma miRNA expression profiles are affected by age and genetic background, and associated with health and production traits in dairy cattle. Using PCR arrays, we assessed 306 plasma miRNAs for effects of age (calves vs mature cows) and genetic background (control vs select lines) in 18 animals. We identified miRNAs which were significantly affected by age (26 miRNAs) and genetic line (5 miRNAs). Using RT-qPCR in a larger cow population (n = 73) we successfully validated array data for 12 age-related miRNAs, one genetic line-related miRNA, and utilised expression data to associate their levels in circulation with functional traits in these animals. Plasma miRNA levels were associated with telomere length (ageing/longevity indicator), milk production and composition, milk somatic cell count (mastitis indicator), fertility, lameness, and blood metabolites linked with body energy balance and metabolic stress. In conclusion, circulating miRNAs could provide useful selection markers for dairy cows to help improve health, welfare and production performance

    A Low Dose of Dietary Resveratrol Partially Mimics Caloric Restriction and Retards Aging Parameters in Mice

    Get PDF
    Resveratrol in high doses has been shown to extend lifespan in some studies in invertebrates and to prevent early mortality in mice fed a high-fat diet. We fed mice from middle age (14-months) to old age (30-months) either a control diet, a low dose of resveratrol (4.9 mg kgβˆ’1 dayβˆ’1), or a calorie restricted (CR) diet and examined genome-wide transcriptional profiles. We report a striking transcriptional overlap of CR and resveratrol in heart, skeletal muscle and brain. Both dietary interventions inhibit gene expression profiles associated with cardiac and skeletal muscle aging, and prevent age-related cardiac dysfunction. Dietary resveratrol also mimics the effects of CR in insulin mediated glucose uptake in muscle. Gene expression profiling suggests that both CR and resveratrol may retard some aspects of aging through alterations in chromatin structure and transcription. Resveratrol, at doses that can be readily achieved in humans, fulfills the definition of a dietary compound that mimics some aspects of CR

    Review of the literature and suggestions for the design of rodent survival studies for the identification of compounds that increase health and life span

    Get PDF
    Much of the literature describing the search for agents that increase the life span of rodents was found to suffer from confounds. One-hundred-six studies, absent 20 contradictory melatonin studies, of compounds or combinations of compounds were reviewed. Only six studies reported both life span extension and food consumption data, thereby excluding the potential effects of caloric restriction. Six other studies reported life span extension without a change in body weight. However, weight can be an unreliable surrogate measure of caloric consumption. Twenty studies reported that food consumption or weight was unchanged, but it was unclear whether these data were anecdotal or systematic. Twenty-nine reported extended life span likely due to induced caloric restriction. Thirty-six studies reported no effect on life span, and three a decrease. The remaining studies suffer from more serious confounds. Though still widely cited, studies showing life span extension using short-lived or β€œenfeebled” rodents have not been shown to predict longevity effects in long-lived animals. We suggest improvements in experimental design that will enhance the reliability of the rodent life span literature. First, animals should receive measured quantities of food and its consumption monitored, preferably daily, and reported. Weights should be measured regularly and reported. Second, a genetically heterogeneous, long-lived rodent should be utilized. Third, chemically defined diets should be used. Fourth, a positive control (e.g., a calorically restricted group) is highly desirable. Fifth, drug dosages should be chosen based on surrogate endpoints or accepted cross-species scaling factors. These procedures should improve the reliability of the scientific literature and accelerate the identification of longevity and health span-enhancing agents

    Effect of dietary restriction and subsequent re-alimentation on the transcriptional profile of bovine ruminal epithelium

    Get PDF
    peer-reviewedCompensatory growth (CG) is utilised worldwide in beef production systems as a management approach to reduce feed costs. However the underlying biology regulating the expression of CG remains to be fully elucidated. The objective of this study was to examine the effect of dietary restriction and subsequent re-alimentation induced CG on the global gene expression profile of ruminal epithelial papillae. Holstein Friesian bulls (n = 60) were assigned to one of two groups: restricted feed allowance (RES; n = 30) for 125 days (Period 1) followed by ad libitum access to feed for 55 days (Period 2) or (ii) ad libitum access to feed throughout (ADLIB; n = 30). At the end of each period, 15 animals from each treatment were slaughtered and rumen papillae harvested. mRNA was isolated from all papillae samples collected. cDNA libraries were then prepared and sequenced. Resultant reads were subsequently analysed bioinformatically and differentially expressed genes (DEGs) are defined as having a Benjamini-Hochberg P value of <0.05. During re-alimentation in Period 2, RES animals displayed CG, growing at 1.8 times the rate of their ADLIB contemporary animals in Period 2 (P < 0.001). At the end of Period 1, 64 DEGs were identified between RES and ADLIB, with only one DEG identified at the end of Period 2. When analysed within RES treatment (RES, Period 2 v Period 1), 411 DEGs were evident. Genes identified as differentially expressed in response to both dietary restriction and subsequent CG included those involved in processes such as cellular interactions and transport, protein folding and gene expression, as well as immune response. This study provides an insight into the molecular mechanisms underlying the expression of CG in rumen papillae of cattle; however the results suggest that the role of the ruminal epithelium in supporting overall animal CG may have declined by day 55 of re-alimentation.SMW received financial assistance from Science Foundation Ireland (SFI) contract no 09/ RFP/GEN2447
    • …
    corecore