710 research outputs found

    Molecular hydrogen in the galaxy and galactic gamma rays

    Get PDF
    Recent surveys of 2.6 mm CO emission and 100 MeV gamma-radiation in the galactic plane reveal a striking correlation suggesting that both emissions may be primarily proportional to the line-of-sight column density of H2 in the inner galaxy. Both the gamma ray and CO data suggest a prominent ring or arm consisting of cool clouds of H2 at a galactocentric distance of approximately 5 kpc with a mean density of approximately 4 atoms/cu cm. The importance of H2 in understanding galactic gamma ray observations is also reflected in the correlation of galactic latitude distribution of gamma rays and dense dust clouds. A detailed calculation of the gamma ray flux distribution in the 0 deg to 180 deg range using the CO data to obtain the average distribution of molecular clouds in the galaxy shows that most of the enhancement in the inner galaxy is due to pion-decay radiation and the 5 kpc ring plays a major role. Detailed agreement with the gamma ray data is obtained with the additional inclusion of contributions from bremsstrahlung and Compton radiation of secondary electrons and Compton radiation from the intense radiation field near the galactic center

    CO (J=3-2) Emission in the Radio Galaxy 53W002 at z=2.394

    Get PDF
    We report a sensitive search for redshifted CO (3-2) emission from the weak radio galaxy 53W002 at z=2.394. Maps at resolutions of 3 arcsec and 235km/s show a significant emission peak within 0.5 arcsec of the optical and radio continuum peaks. The measured narrow band flux is approximately ten times the extrapolated cm-wavelength non-thermal radio continuum expected at 101.9 GHz and exhibits a spectral profile implying a 540 km/s width (FWHM) at a systemic redshift z=2.394 for CO (3-2). This emission has a total integrated flux of 1.51(+/-0.2) Jy km/s, approximately four times weaker than that previously seen in the lensed systems FSC10214+4724 and the Cloverleaf QSO. For a Galactic CO-to-H2 conversion ratio, the implied molecular gas mass is 7.4x10^10 solar masses (H=75 km/s/Mpc and q=0.5). The CO emission is elongated at P.A.=120 degrees with a deconvolved major axis radius of 15 kpc (2.8 arcsec). This extension is along a similar direction to that seen in the cm-wave radio continuum and the optical but approximately three times larger. A velocity gradient is seen along the major axis, and if this structure is a (forming) disk, the implied dynamical mass is 9-22x10^10 solar masses at radii less than or equal to 15 kpc, assuming inclination i=0 degrees (edge-on). The magnitude of these masses and the similarity of the high gas-mass fraction are consistent with the host galaxy of 53W002 being a young galactic system, but the metallicity (probably greater than or equal to 0.1 solar in order to produce the CO lines) implies significant heavy element production prior to z=2.4. This constitutes the first high redshift molecular gas which is detected in emission where there is probably no gravitational magnification

    Molecular Gas in the Powerful Radio Nucleus of the Ultraluminous Infrared Galaxy PKS 1345+12

    Get PDF
    Millimeter CO(1-0) interferometry and high resolution, Hubble Space Telescope (HST) 1.1, 1.6, and 2.2 micron imaging of the radio compact galaxy PKS 1345+12 are presented. With an infrared luminosity of 2x10^{12} L_sun, PKS 1345+12 is a prime candidate for studying the link between the ultraluminous infrared galaxy phenomenon and radio galaxies. These new observations probe the molecular gas distribution and obscured nuclear regions of PKS 1345+12 and provide morphological support for the idea that the radio activity in powerful radio galaxies is triggered by the merger of gas rich galaxies. Two nuclei separated by 2" (4.0 kpc) are observed in the near-infrared; the extended southeastern nucleus has colors consistent with reddened starlight, and the compact northwestern nucleus has extremely red colors indicative of an optical quasar with a warm dust component. Further, the molecular gas, 3mm continuum, and radio emission are coincident with the redder nucleus, confirming that the northwestern nucleus is the site of the AGN and that the molecular gas is the likely fuel source.Comment: LaTex, 5 pages with 1 postscript and 1 jpg figure, ApJ Letters, in press (August 20, 1999

    The VLA-COSMOS Survey. II. Source Catalog of the Large Project

    Get PDF
    The VLA-COSMOS Large Project is described and its scientific objective is discussed. We present a catalog of ~3600 radio sources found in the 2 deg^2 COSMOS field at 1.4 GHz. The observations in the VLA A and C configuration resulted in a resolution of 1.5" Ă— 1.4" and a mean rms noise of ~10.5 (15) ÎĽJy beam^(-1) in the central 1 (2) deg^2. Eighty radio sources are clearly extended consisting of multiple components, and most of them appear to be double-lobed radio galaxies. The astrometry of the catalog has been thoroughly tested, and the uncertainty in the relative and absolute astrometry are 130 and <55 mas, respectively

    The Mass Function of Super Giant Molecular Complexes and Implications for Forming Young Massive Star Clusters in the Antennae (NGC 4038/39)

    Full text link
    We have used previously published observations of the CO emission from the Antennae (NGC 4038/39) to study the detailed properties of the super giant molecular complexes with the goal of understanding the formation of young massive star clusters. Over a mass range from 5E6 to 9E8 solar masses, the molecular complexes follow a power-law mass function with a slope of -1.4 +/- 0.1, which is very similar to the slope seen at lower masses in molecular clouds and cloud cores in the Galaxy. Compared to the spiral galaxy M51, which has a similar surface density and total mass of molecular gas, the Antennae contain clouds that are an order of magnitude more massive. Many of the youngest star clusters lie in the gas-rich overlap region, where extinctions as high as Av~100 imply that the clusters must lie in front of the gas. Combining data on the young clusters, thermal and nonthermal radio sources, and the molecular gas suggests that young massive clusters could have formed at a constant rate in the Antennae over the last 160 Myr and that sufficient gas exists to sustain this cluster formation rate well into the future. However, this conclusion requires that a very high fraction of the massive clusters that form initially in the Antennae do not survive as long as 100 Myr. Finally, we compare our data with two models for massive star cluster formation and conclude that the model where young massive star clusters form from dense cores within the observed super giant molecular complexes is most consistent with our current understanding of this merging system. (abbreviated)Comment: 40 pages, four figures; accepted for publication in Ap

    Dynamically Driven Evolution of the Interstellar Medium in M51

    Full text link
    We report the highest-fidelity observations of the spiral galaxy M51 in CO emission, revealing the evolution of giant molecular clouds (GMCs) vis-a-vis the large-scale galactic structure and dynamics. The most massive GMCs (so-called GMAs) are first assembled and then broken up as the gas flow through the spiral arms. The GMAs and their H2 molecules are not fully dissociated into atomic gas as predicted in stellar feedback scenarios, but are fragmented into smaller GMCs upon leaving the spiral arms. The remnants of GMAs are detected as the chains of GMCs that emerge from the spiral arms into interarm regions. The kinematic shear within the spiral arms is sufficient to unbind the GMAs against self-gravity. We conclude that the evolution of GMCs is driven by large-scale galactic dynamics --their coagulation into GMAs is due to spiral arm streaming motions upon entering the arms, followed by fragmentation due to shear as they leave the arms on the downstream side. In M51, the majority of the gas remains molecular from arm entry through the inter-arm region and into the next spiral arm passage.Comment: 6 pages, including 3 figures. Accepted, ApJ

    Cognitive Information Processing

    Get PDF
    Contains reports on three research projects.National Science Foundation (Grant GP-2495)National Institutes of Health (Grant MH-04737-05)National Aeronautics and Space Administration (Grant NsG-496)Joint Services Electronics Program by the U. S. Army Research Office, Durha

    High-Resolution Imaging of Molecular Gas and Dust in the Antennae (NGC 4038/39): Super Giant Molecular Complexes

    Get PDF
    We present new aperture synthesis CO maps of the Antennae (NGC 4038/39) obtained with the Caltech Millimeter Array. These sensitive images show molecular emission associated with the two nuclei and a partial ring of star formation to the west of NGC 4038, as well as revealing the large extent of the extra-nuclear region of star formation (the ``overlap region''), which dominates the CO emission from this system. The largest molecular complexes have masses of 3-6x10^8 M_sun, typically an order of magnitude larger than the largest structures seen to date in more quiescent galaxy disks. The extremely red luminous star clusters identified previously with HST are well-correlated with the CO emission, which supports the conclusion that they are highly embedded young objects rather than old globular clusters. There is an excellent correlation between the CO emission and the 15 micron emission seen with ISO, particularly for the brightest regions. The most massive complexes in the overlap region have similar [NeIII]/[NeII] ratios, which implies that all these regions are forming many massive stars. However, only the brightest mid-infrared peak shows strong, rising continuum emission longward of 10 microns, indicative of very small dust grains heated to high temperatures by their proximity to nearby luminous stars. Since these grains are expected to be removed rapidly from the immediate environment of the massive stars, it is possible that this region contains very young (< 1 Myr) sites of star formation. Alternatively, fresh dust grains could be driven into the sphere of influence of the massive stars, perhaps by the bulk motions of two giant molecular complexes. The kinematics and morphology of the CO emission in this region provide some support for this second scenario.Comment: Accepted for publication in The Astrophysical Journal, 13 pages, 5 figures, higher quality color images available at http://www.astro.cornell.edu/staff/vassilis/papers/ngc4038_co.ps.g
    • …
    corecore