301 research outputs found

    Conductance Distribution of a Quantum Dot with Non-Ideal Single-Channel Leads

    Get PDF
    We have computed the probability distribution of the conductance of a ballistic and chaotic cavity which is connected to two electron reservoirs by leads with a single propagating mode, for arbitrary values of the transmission probability Gamma of the mode, and for all three values of the symmetry index beta. The theory bridges the gap between previous work on ballistic leads (Gamma = 1) and on tunneling point contacts (Gamma << 1). We find that the beta-dependence of the distribution changes drastically in the crossover from the tunneling to the ballistic regime. This is relevant for experiments, which are usually in this crossover regime. ***Submitted to Physical Review B.***Comment: 7 pages, REVTeX-3.0, 4 postscript figures appended as self-extracting archive, INLO-PUB-940607

    Diagnostic criterion for crystallized beams

    Get PDF
    Small ion crystals in a Paul trap are stable even in the absence of laser cooling. Based on this theoretically and experimentally well-established fact we propose the following diagnostic criterion for establishing the presence of a crystallized beam: Absence of heating following the shut-down of all cooling devices. The validity of the criterion is checked with the help of detailed numerical simulations.Comment: REVTeX, 11 pages, 4 figures; submitted to PR

    Correlations and pair emission in the escape dynamics of ions from one-dimensional traps

    Full text link
    We explore the non-equilibrium escape dynamics of long-range interacting ions in one-dimensional traps. The phase space of the few ion setup and its impact on the escape properties are studied. As a main result we show that an instantaneous reduction of the trap's potential depth leads to the synchronized emission of a sequence of ion pairs if the initial configurations are close to the crystalline ionic configuration. The corresponding time-intervals of the consecutive pair emission as well as the number of emitted pairs can be tuned by changing the final trap depth. Correlations between the escape times and kinetic energies of the ions are observed and analyzed.Comment: 17 pages, 9 figure

    Mesoscopic Transport Through Ballistic Cavities: A Random S-Matrix Theory Approach

    Full text link
    We deduce the effects of quantum interference on the conductance of chaotic cavities by using a statistical ansatz for the S matrix. Assuming that the circular ensembles describe the S matrix of a chaotic cavity, we find that the conductance fluctuation and weak-localization magnitudes are universal: they are independent of the size and shape of the cavity if the number of incoming modes, N, is large. The limit of small N is more relevant experimentally; here we calculate the full distribution of the conductance and find striking differences as N changes or a magnetic field is applied.Comment: 4 pages revtex 3.0 (2-column) plus 2 postscript figures (appended), hub.pam.94.

    How Phase-Breaking Affects Quantum Transport Through Chaotic Cavities

    Full text link
    We investigate the effects of phase-breaking events on electronic transport through ballistic chaotic cavities. We simulate phase-breaking by a fictitious lead connecting the cavity to a phase-randomizing reservoir and introduce a statistical description for the total scattering matrix, including the additional lead. For strong phase-breaking, the average and variance of the conductance are calculated analytically. Combining these results with those in the absence of phase-breaking, we propose an interpolation formula, show that it is an excellent description of random-matrix numerical calculations, and obtain good agreement with several recent experiments.Comment: 4 pages, revtex, 3 figures: uuencoded tar-compressed postscrip

    Failure of Effective Potential Approach: Nucleus-Electron Entanglement in the He-Ion

    Get PDF
    Entanglement may be considered a resource for quantum-information processing, as the origin of robust and universal equilibrium behaviour, but also as a limit to the validity of an effective potential approach, in which the influence of certain interacting subsystems is treated as a potential. Here we show that a closed three particle (two protons, one electron) model of a He-ion featuring realistic size, interactions and energy scales of electron and nucleus, respectively, exhibits different types of dynamics depending on the initial state: For some cases the traditional approach, in which the nucleus only appears as the center of a Coulomb potential, is valid, in others this approach fails due to entanglement arising on a short time-scale. Eventually the system can even show signatures of thermodynamical behaviour, i.e. the electron may relax to a maximum local entropy state which is, to some extent, independent of the details of the initial state.Comment: Submitted to Europhysics Letter

    Doppler cooling of a Coulomb crystal

    Get PDF
    We study theoretically Doppler laser-cooling of a cluster of 2-level atoms confined in a linear ion trap. Using several consecutive steps of averaging we derive, from the full quantum mechanical master equation, an equation for the total mechanical energy of the one dimensional crystal, defined on a coarse-grained energy scale whose grid size is smaller than the linewidth of the electronic transition. This equation describes the cooling dynamics for an arbitrary number of ions and in the quantum regime. We discuss the validity of the ergodic assumption (i.e. that the phase space distribution is only a function of energy). From our equation we derive the semiclassical limit (i.e. when the mechanical motion can be treated classically) and the Lamb-Dicke limit (i.e. when the size of the mechanical wave function is much smaller than the laser wavelength). We find a Fokker-Planck equation for the total mechanical energy of the system, whose solution is in agreement with previous analytical calculations which were based on different assumptions and valid only in their specific regimes. Finally, in the classical limit we derive an analytic expression for the average coupling, by light scattering, between motional states at different energies.Comment: 19 pages, 3 figure

    LIFE-SHARE Project: Developing a Digitisation Strategy Toolkit

    Get PDF
    This poster will outline the Digitisation Strategy Toolkit created as part of the LIFE-SHARE project. The toolkit is based on the lifecycle model created by the LIFE project and explores the creation, acquisition, ingest, preservation (bit-stream and content) and access requirements for a digitisation strategy. This covers the policies and infrastructure required in libraries to establish successful practices. The toolkit also provides both internal and external resources to support the service. This poster will illustrate how the toolkit works effectively to support digitisation with examples from three case studies at the Universities of Leeds, Sheffield and York
    • 

    corecore