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Conductance distribution of a quantum dot with nonideal single-channel leads
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The entire distribution is computed of the conductance of a quantum dot connected to two electron reservoirs
by leads with a single propagating mode, for arbitrary transmission probability Γ of the mode. The theory
bridges the gap between previous work on ballistic leads (Γ = 1) and on tunneling point contacts

An ensemble of mesoscopic Systems has large sample-to-
sample fluctuations in its transport properties, so that the
average is not sufficient to characterize a single sample. To
determine the complete distribution of the conductance is
therefore a fundamental problem in this field. Early work
focused on an ensemble of disordered wires. (See Ref. l for
a review.) The distribution of the conductance in that case is
either normal or log-normal, depending on whether the wires
are in the metallic or insulating regime. Recently, it was
found that a "quantum dot" has a qualitatively different con-
ductance distribution.2""4 A quantum dot is a small confined
region, having a large level spacing compared to the thermal
energy, which is weakly coupled by point contacts to two
electron reservoirs. The classical motion within the dot is
assumed to be ballistic and chaotic. An ensemble consists of
dots with small variations in shape or in Fermi energy. The
capacitance of a dot is assumed to be sufficiently large that
the Coulomb blockade can be ignored, i.e., the electrons are
assumed to be noninteracting. Two altogether different ap-
proaches have been taken to this problem.

Baranger and Mello,3 and Jalabert, Pichard, and one of the
authors4 started from random-matrix theory.5 The scattering
matrix S of the quantum dot was assumed to be a member of
the circular ensemble ofNXN unitary matrices, äs is appro-
priate for a chaotic billiard.6'7 In the single-channel case (N
= 2), the distribution P (T) of the transmission probability T
[and hence of the conductance G = (2e2/h)T] was found to
be

(1)

where β e {1,2,4} is the symmetry index of the ensemble
(ß=l or 2 in the absence or presence of a time-reversal
symmetry-breaking magnetic field; ß = 4 in zero magnetic
field with strong spin-orbit interaction). Equation (1) was
found to be in good agreement with numerical simulations of
transmission through a chaotic billiard connected to ideal
leads having a single propagating mode.3 (The case ß=4
was not considered in Ref. 3.)

Previously, Prigodin, Efetov, and lida2 had applied the
method of supersymmetry to the same problem, but with a
different model for the point contacts. They considered the
case of broken time-reversal symmetry (/3=2), for which
Eq. (1) would predict a uniform conductance distribution.
Instead, the distribution of Ref. 2 is strongly peaked near
zero conductance. The tail of the distribution (towards unit
transmission) is governed by resonant tunneling, and is con-

sistent with earlier work by Jalabert, Stone, and Alhassid8 on
resonant tunneling in the Coulomb-blockade regime.

It is the purpose of the present paper to bridge the gap
between these two theories, by considering a more general
model for the coupling of the quantum dot to the reservoirs.
Instead of assuming ideal leads, äs in Refs. 3 and 4, we allow
for an arbitrary transmission probability Γ of the propagating
mode in the lead, äs a model for coupling via a quantum
point contact with conductance below 2e2/h. Equation (1)
corresponds to Γ = 1 (ballistic point contact). In the limit
F<S1 (tunneling point contact) we recover, for β = 2, the
result of Ref. 2. We consider also ß= l and 4 and show that
— in contrast to Eq. (1) — the limit F<S1 depends only
weakly on the symmetry index ß. In the crossover region
from ballistic to tunneling conduction we find a remarkable
Γ dependence of the conductance fluctuations: The variance
is monotonically decreasing for ß—1 and 2, but it has a
maximum for ß = 4 at Γ = 0.74.

The System under consideration is illustrated in the inset
of Fig. l(b). It consists of a quantum dot with two single-
channel leads containing a tunnel barrier (transmission prob-
ability Γ). We assume identical leads for simplicity. The
transmission properties of this System are studied in a trans-
fer matrix formulation. The transfer matrix Md of the quan-
tum dot can be parametrized äs9'10

(2)

where the parameter \d is related to the transmission prob-
ability Td of the dot by

\-ι (3)

The numbers u} and v} satisfy constraints that depend on the
symmetry of the Hamiltonian of the quantum dot:

ι φ — ^0i (A \

with a; a real (ß=l), complex (ß=2), or real quaternion
(/3 = 4) number of modulus one. In general the choice for
Uj and Vj and their parametrization (4) is not unique.
Uniqueness can be achieved by requiring that

O'=l,2). (5)

As in Refs. 3 and 4, we assume that the scattering matrix
Sd of the quantum dot is a member of the circular ensemble,
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with Γ = (1 + μ,) 1. The transfer matrix M of the total sys-
tem follows from the matrix product

= MbMdMb. (8)

From Eqs. (2)-(8) we straightforwardly compute the trans-
mission probability T of the total System and its probability
distribution P(T). The result for T is

(9)

(10)

where we have abbreviated

± = φι±φ2.

The variables a}, and with them all β dependence, drop out
of this expression. Equation (9) can be inverted11 to yield
\d in terms of φ1 and φ2 for given T and Γ. The probability
distribution P (T) then follows from

(H)dT

where the Integration is over all φ, e (Ο,ττ) for which Xd is
real and positive.

For Γ= l the function P(T) is given by Eq. (1), äs found
in Refs. 3 and 4. In Fig. l the crossover from a ballistic to a
tunneling point contact is shown. For Γ<ί1 and T<\,
Γ2Ρ(Τ) becomes a Γ-independent function of T/T2, which
is shown in the inset of Fig. l(c). Several asymptotic expres-
sions for P (T) can be obtained from Eq. (11) for Γ« l,

ß=l: P(T)=>

n-1/2

r T~3'2

Γ2+Γ
Π2 + 4Γ)5/2

(12a)

(12b)

FIG. 1. Distribution of the transmission probability T through a
quantum dot with nonideal single-channel leads, for three values of
the transmission probability Γ of the leads. The curves are com-
puted from Eq. (11) for each symmetry class (ß= 1,2,4). The inset
of (b) shows the quantum dot, the inset of (c) shows the asymptotic
behavior of P(T) for Γ<^1 οη a log-log scale.

which means that Sd is uniformly distributed in the unitary
group (or the subgroup required by time reversal and/or spin
rotation symmetry). The corresponding probability distribu-
tion of the transfer matrix Md is

(6)

of the tunnel barrier in the lead is

Pd(Md)

The transfer matrix
given by

*Ή Γ- /ΓΤ- , (7)

= 24ΓΓ- (12c)

FIG. 2. Variance of the transmission probability Γ äs a function
of the transmission probability of the leads Γ.
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The ß = 2 expression (12b) for P (T) in the tunneling regime
agrees precisely with the supersymmetry calculation of Pri-
godin, Efetov, and lida.2'12 Equations (12) do not cover the
ränge near unit transmission. As T—>1 (and Γ<ί1),

P(T)->CßT, with c^l/277·, c2 = f, and c4 = |.
A quite remarkable feature of the quantum dot with ideal

leads is the strong β dependence of P (T) [cf. Fig. l(a)]. For
Γ<ί1, the β dependence is much less pronounced. For

Γϊ>Γ2 the leads dominate the transmission properties of the
total system, thereby suppressing the β dependence of P (T)
(although not completely). For very small transmission coef-
ficients (Γ<ίΓ2) the nonideality of the leads is of less impor-
tance, and the characteristic β dependence of Eq. (1) is re-
covered [see inset of Fig. l(c)].

The moments of P (T) can be computed in closed form
for all Γ directly from Eq. (9). The first two moments are
[recall

(T2)

(13)

(14)

For Γ<ί1 one has asymptotically

n-1

τΠ2(ß+: (15)

The Γ dependence of the variance VarT= (T2) - (T)2 of the
transmission probability is shown in Fig. 2. In the crossover
regime between a ballistic point contact (Γ = 1) and a tun-
neling point contact (Γ<ϊ1), the three symmetry classes
show striking differences. For ß=l and 2 the conductance
fluctuations decrease monotonically upon decreasing Γ,
whereas they show nonmonotonic behavior for β =4. Notice
also that the transition ß=l —» β =2, by application of a
magnetic field, reduces fluctuations for Γ>Γε but increases
fluctuations for r<rc, where rc=0.92.

In summary, we have cornputed the transmission prob-
ability of a ballistic and chaotic cavity for all possible values
of the symmetry index β and for arbitrary values of the
transparency Γ of the single-channel leads. Our results de-
scribe the conductance of a quantum dot in the crossover
regime from a coupling to the reservoirs by ballistic to tun-
neling point contacts. The theory unifies and extends known
results. The characteristic β dependence of the distribu-
tion function that was found for ideal leads [Eq. (1)] is
strongly suppressed for transmission probabilities T larger
than Γ2. A closely related phenomenon is the nontrivial Γ
dependence of the conductance fluctuations for the three
symmetry classes. The theory is relevant for experiments on
chaotic scattering in quantum dots with adjustable point con-
tacts, which are of great current interest.

This work was supported by the Dutch Science Founda-
tion NWO/FOM.
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