990 research outputs found

    Characterization of Generalized Haar Spaces

    Get PDF
    AbstractWe say that a subsetGofC0(T,Rk) is rotation-invariant if {Qg:g∈G{=Gfor anyk×korthogonal matrixQ. LetGbe a rotation-invariant finite-dimensional subspace ofC0(T,Rk) on a connected, locally compact, metric spaceT. We prove thatGis a generalized Haar subspace if and only ifPG(f) is strongly unique of order 2 wheneverPG(f) is a singleton

    Error Estimates and Lipschitz Constants for Best Approximation in Continuous Function Spaces

    Get PDF
    We use a structural characterization of the metric projection PG(f), from the continuous function space to its one-dimensional subspace G, to derive a lower bound of the Hausdorff strong unicity constant (or weak sharp minimum constant) for PG and then show this lower bound can be attained. Then the exact value of Lipschitz constant for PG is computed. The process is a quantitative analysis based on the Gâteaux derivative of PG, a representation of local Lipschitz constants, the equivalence of local and global Lipschitz constants for lower semicontinuous mappings, and construction of functions

    Characterization of the Local Lipschitz Constant

    Get PDF
    A characterization, using polynomials introduced by A. V. Kolushov, is given for the local Lipschitz constant for the best approximation operator in Chebyshev approximation from a Haar set. The characterization is then used to study the existence of uniform local Lipschitz constants

    Fluctuations, line tensions, and correlation times of nanoscale islands on surfaces

    Full text link
    We analyze in detail the fluctuations and correlations of the (spatial) Fourier modes of nano-scale single-layer islands on (111) fcc crystal surfaces. We analytically show that the Fourier modes of the fluctuations couple due to the anisotropy of the crystal, changing the power spectrum of the fluctuations, and that the actual eigenmodes of the fluctuations are the appropriate linear combinations of the Fourier modes. Using kinetic Monte Carlo simulations with bond-counting parameters that best match realistic energy barriers for hopping rates, we deduce absolute line tensions as a function of azimuthal orientation from the analyses of the fluctuation of each individual mode. The autocorrelation functions of these modes give the scaling of the correlation times with wavelength, providing us with the rate-limiting kinetics driving the fluctuations, here step-edge diffusion. The results for the energetic parameters are in reasonable agreement with available experimental data for Pb(111) surfaces, and we compare the correlation times of island-edge fluctuations to relaxation times of quenched Pb crystallites.Comment: 11 pages, 8 figures; to appear in PRB 70, xxx (15 Dec 2004), changes in MC and its implication

    Anomalous Dimension and Spatial Correlations in a Point-Island Model

    Full text link
    We examine the island size distribution function and spatial correlation function of a model for island growth in the submonolayer regime in both 1 and 2 dimensions. In our model the islands do not grow in shape, and a fixed number of adatoms are added, nucleate, and are trapped at islands as they diffuse. We study the cases of various critical island sizes ii for nucleation as a function of initial coverage. We found anomalous scaling of the island size distribution for large ii . Using scaling, random walk theory, a version of mean-field theory we obtain a closed form for the spatial correlation function. Our analytic results are verified by Monte Carlo simulations

    Absence of non-trivial asymptotic scaling in the Kashchiev model of polynuclear growth

    Full text link
    In this brief comment we show that, contrary to previous claims [Bartelt M C and Evans J W 1993 {\it J.\ Phys.\ A} 26{\bf 26} 2743], the asymptotic behaviour of the Kashchiev model of polynuclear growth is trivial in all spatial dimensions, and therefore lies outside the Kardar-Parisi-Zhang universality class.Comment: 3 pages, 4 postscript figures, uses eps

    Fluctuations of steps on crystal surfaces

    Full text link
    Fluctuations of isolated and pairs of ascending steps of monoatomic height are studied in the framework of SOS models, using mainly Monte Carlo techniques. Below the roughening transistion of the surface, the profiles of long steps show the same scaling features for terrace and surface diffusion. For a pair of short steps, their separation distance is found to grow as t1/3t^{1/3} at late stages. Above roughening, simulational data on surface diffusion agree well with the classical continuum theory of Mullins.Comment: 4 pages, 2 eps figure

    A lattice gas model of II-VI(001) semiconductor surfaces

    Get PDF
    We introduce an anisotropic two-dimensional lattice gas model of metal terminated II-IV(001) seminconductor surfaces. Important properties of this class of materials are represented by effective NN and NNN interactions, which result in the competition of two vacancy structures on the surface. We demonstrate that the experimentally observed c(2x2)-(2x1) transition of the CdTe(001) surface can be understood as a phase transition in thermal equilbrium. The model is studied by means of transfer matrix and Monte Carlo techniques. The analysis shows that the small energy difference of the competing reconstructions determines to a large extent the nature of the different phases. Possible implications for further experimental research are discussed.Comment: 7 pages, 2 figure

    Step fluctuations and random walks

    Full text link
    The probability distribution p(l) of an atom to return to a step at distance l from the detachment site, with a random walk in between, is exactly enumerated. In particular, we study the dependence of p(l) on step roughness, presence of other reflecting or absorbing steps, interaction between steps and diffusing atom, as well as concentration of defects on the terrace neighbouring the step. Applying Monte Carlo techniques, the time evolution of equilibrium step fluctuations is computed for specific forms of return probabilities. Results are compared to previous theoretical and experimental findings.Comment: 16 pages, 6 figure
    • …
    corecore