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Abstract. – We introduce an anisotropic two-dimensional lattice gas model of metal-termi-
nated II-VI(001) semiconductor surfaces. Important properties of this class of materials are
represented by effective NN and NNN interactions, which results in the competition of two
vacancy structures on the surface. We demonstrate that the experimentally observed transition
from the dominant c(2× 2) ordering of the CdTe(001) surface to a local (2× 1) arrangement of
Cd atoms can be explained as a phase transition in thermal equilibrium. The model is studied
by means of transfer-matrix and Monte Carlo techniques. The analysis shows that the small
energy difference of the competing reconstructions determines to a large extent the nature of
the different phases. Possible implications for further experimental research are discussed.

Two-dimensional lattice gases have served as models of atoms adsorbed on a singular
crystal surface, or the terminating layer of such a surface itself, respectively. The interplay
of attractive and repulsive short-range interactions can result in highly non-trivial features,
see, e.g., [1–6] and references therein. For instance, square lattice systems with infinite NN
repulsion (hard squares) and NNN attraction display tricritical behavior [4, 7, 8]. At low
temperatures a dense, c(2×2)-ordered phase coexists with a disordered phase of low coverage.
Here we will investigate a particular model with highly anisotropic attractive and repulsive
interactions, which result in a c(2× 2) ground state, as well. However, this ordering competes
with a (2 × 1) structure which can prevail locally in the disordered regime.

The model parameters are chosen to represent certain properties of metal-terminated
II-VI(001) semiconductor surfaces. This class of materials has attracted considerable at-
tention due to their potential technological relevance in the development of optoelectronic
devices, for a recent overview, see [9]. Frequently, (001) surfaces serve as substrates for the
growth of II-VI crystals [10] by means of Molecular Beam Epitaxy or Atomic Layer Epitaxy,
for instance. Surface reconstructions play an important role in this context and have been
the target of experimental studies [10–12]. In contrast to most III-V materials, II-VI(001)
c© EDP Sciences



170 EUROPHYSICS LETTERS

-

c(2x2)  (2x1)

x, [110]

y, [110]

0.0

0.1

0.2

0.3

0.4

0.5

m
2x

2
c

d
m

c

T

x
θ

2x
1

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.1

0.2

0.3

0.4

0.5

a)

b)

Fig. 1 – a) Structural model of the c(2×2) and (2×1) reconstructions of the CdTe(001) surface [11,12].
Shaded areas mark the corresponding primitive unit cells. Large filled circles represent Cd atoms at
the surface, open circles correspond to Te in the underlying half-layer, and small filled circles to the
next, completed half-layer of Cd. Crosses represent empty sites in the simplifying lattice gas model.
Note that the Te atoms are dislocated according to the Cd positions in the respective reconstruction.
b) The phase transition at constant chemical potential µ = −1.96 for εx = −1.96. The lower panel
displays results of the TM calculation for L = 10 (solid lines) and MC simulations (64 × 64 sites,
single run): coverage θ (triangles), correlations cd (diamonds) and cx (circles). The upper panel shows
m2×2 (squares) and m2×1 (crosses) for the same temperature range.

surfaces exhibit a fairly small number of possible reconstructions, which are less complex than
their III-V counterparts, in general.

In the following we will mainly address the CdTe(001) surface, see [10] for a detailed dis-
cussion. Apparently, only Cd-terminated (001) surfaces are observed in vacuum [13,14]. The
underlying, complete Te half-layer provides potential Cd sites which form a simple square lat-
tice. Electron counting rules [15] and similar considerations [16] show that the simultaneous
occupation of NN sites in the [11̄0]-direction (termed the y-direction in the following) is ex-
cluded in the terminating Cd layer, whereas NN neighbors along the [110]-direction (or x-axis,
for short) are possible. Therefore, unless excess Cd is deposited, the surface is characterized
by a vacancy structure with a maximum Cd coverage of θ = 1/2.

Figure 1(a) illustrates the structure of the two relevant configurations which satisfy this
constraint at θ = 1/2. The c(2× 2) reconstruction is characterized by a staggered (checkered)
occupation of the square lattice sites. In the (2×1) structure, Cd atoms arrange in rows along
the x-direction which alternate with rows of vacancies. In principle, the configurations can be
transformed into one another by shifting every other column of Cd atoms by one lattice site.

Density functional (DF) calculations have shown that the surface energies of the two
competing structures at θ = 1/2 and T = 0 differ only by a small amount ∆E, with the
c(2×2) reconstruction having the slightly lower energy. In [17] it is argued that this preference
can be understood qualitatively in terms of electron Coulomb interactions, as the distances
of neighboring metal atoms are smaller in the (2 × 1) arrangement. For ZnSe, a value of
∆E ≈ 0.03 eV per potential Zn site is given in [17–19]. According to [20], the energy difference
is even smaller (∆E ≈ 0.016 eV) for the CdTe(001) surface.

This factor should play a crucial role in a phase transition which has been studied for
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CdTe [10–12]: in vacuum at temperatures below a critical value of about Tc = 270 ◦C±10 ◦C,
the surface displays a mixed c(2×2)-(2×1) structure with a clear prevalence of the checkered
configuration close to (but below) Tc. Above Tc, a local (2 × 1) arrangement of Cd atoms
dominates the surface. The observed coverage is in the vicinity of θ ≈ 0.4 in both regimes [12].
The situation is complicated by the fact that the material begins to sublimate significantly
at about the same temperature Tc. However, it has been argued that sublimation through
step flow would not hinder the surface to achieve an effective equilibrium configuration on
terraces [12].

The aim of our theoretical investigation is to clarify whether the nature of the above-
discussed transition can be explained within a thermodynamic equilibrium framework at all,
or if non-equilibrium effects should play a crucial role.

The modeling of reconstructions which are characterized by displacement of atoms from
their regular lattice positions usually requires continuous two- or three-dimensional degrees
of freedom. A prominent example is the description of W(100) surfaces by XY models, see,
e.g., [21] and references therein. Here, however, reconstruction occurs via the rearrangement of
atoms in vacancy structures and a description in terms of occupation variables is appropriate.

We present here a lattice gas model which takes into account important features of the
above-discussed II-VI(001) surfaces. We will loosely speak of Cd atoms in the following,
without claiming to reproduce particular properties of CdTe faithfully. In fact, the basic
structure of the model would be the same for other II-VI(001) surfaces. In our simplifying
picture we consider only the terminating Cd layer, represented by a square lattice of sites
(x, y) which can be either occupied (nx,y = 1) or empty (nx,y = 0). The influence of the
underlying crystal structure is accounted for by effective pairwise interactions of atoms. In
the y-direction, an infinite repulsion excludes the simultaneous occupation of NN sites, i.e.
nx,y = 1 always implies nx,y±1 = 0. In the x-direction, an attractive interaction favors the
occupation of NN pairs, the strength of which is denoted by εx < 0. A competing attractive
interaction of diagonal neighbors (NNN) εd < 0 tends to stabilize the c(2× 2) arrangement of
atoms. The total energy of the system is given by

H =
∑
x,y

nx,y

(
εd [ nx+1,y+1 + nx+1,y−1 ] + εx nx+1,y − µ

)
, (1)

where the sum is over all lattice sites and the (effective) chemical potential µ controls the
mean coverage θ = 〈nx,y 〉 ≤ 1/2. Without loss of generality, we can choose εd = −1 and thus
fix the energy scale. Then εx controls the energy difference ∆E (in units of | εd |) between a
perfectly ordered c(2 × 2) and a perfect (2 × 1) arrangement at θ = 1/2: ∆E = | 2 + εx |/2
(per lattice site). The ground state of the system is a c(2 × 2)-ordered configuration with
θ = 1/2, whenever εx > −2 (and µ > −2).

The free energy of the system is obtained from the partition function Z =
∑

{nx,y } e−βH ,
where the temperature T = 1/β is also measured in units of | εd | = 1. The sum is restricted
to configurations {nx,y } which obey the NN exclusion in the y-direction. We have applied
standard transfer matrix (TM) techniques [22] to evaluate the logarithm of ZL, the partition
sum of a system with M = N × L lattice sites in the limit N → ∞. Strips of width L with
periodic boundary conditions were aligned with the x-axis. Hence, only even L allow for the
perfect c(2 × 2) ordering of the ground state. Note that the TM is of dimension 2L × 2L, but
with a much smaller number 3L of non-zero elements due to the anisotropic repulsion. This
allows for the sparse representation of the TM in the numerical treatment.

As a first example we consider the model with εx = −1.96. Figure 1(b) shows results for
strip width L = 10 at different temperatures and constant chemical potential µ = −1.96. We
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have evaluated the coverage θ = 〈nx,y 〉 =
∑

x,y nx,y/M as well as the correlations

cd =
1
2
〈nx,y ( nx+1,y+1 + nx+1,y−1 ) 〉 and cx = 〈nx,ynx+1,y 〉. (2)

These measure the probabilities of finding an occupied NN pair (cx) or NNN pair (cd) of Cd
atoms, i.e. the contribution of (2× 1)- or c(2× 2)-dominated regions in the system. Coverage
and correlations can be obtained from proper derivatives of ln ZL, or, as in the case of θ and
cx, directly from the relevant eigenvector of the TM [3,4].

In addition, fig. 1(b) displays results of grand-canonical Monte Carlo simulations of a sys-
tem with M = 64×64 sites. In order to achieve reasonably fast equilibration, we have applied
a rejection-free algorithm [23] which, at any given time, represents all possible changes of the
system in a binary search tree and chooses a particular one according to the respective rate.
The results are in good agreement with the TM calculation. In addition to the correlations
(2) we determine order parameters which are associated with a perfect c(2 × 2) or (2 × 1)
structure on one of the sublattices:

m2×1 =
1
M

y even∑
x,y

nx,y and m2×2 =
1
M

(x+y) even∑
x,y

nx,y . (3)

Large values (≤ θ) of these quantities indicate long-range order, whereas a homogeneously
disordered occupation of the lattice would yield m2×2 = m2×1 = θ/2. For the sake of breaking
the sublattice symmetry, we have initialized the system with m2×2 = θ for the equilibration
dynamics. We have refrained from determining the order parameters within the TM approach
which would require the introduction of additional staggered fields to the energy function (1).
The TM formalism offers a more suitable method to localize the phase transition [4].

In the considered example, one observes a sudden drop of the coverage at T ≈ 0.3 when
µ = −1.96 is held constant. Simultaneously, the system loses its long-range order as indicated
by values m2×2 = m2×1 = θ/2 in the simulations. This is also signalled in the properties of
the relevant eigenvector in the TM analysis [4]. The behavior is consistent with a first-order
transition, as was investigated for similar models with isotropic or anisotropic interactions,
see, e.g., [1–5] and references therein.

Here, however, also the NNN correlation cd decreases rapidly at the coverage drop, while
cx displays a sudden increase and cx > cd in the high-temperature regime. This indicates that
the phase transition also affects the short-range correlations in the system: atoms order in
rows of the (2× 1) type without long-range order. For θ = 1/2 the c(2× 2) ordering is always
preferred energetically. At small coverages, however, the local rearrangement of atoms in rows
along the x-direction can be favorable compared to a partial occupation of NNN sites with
many broken bonds of type εd. Indeed, the degree of the prevalence of cx over cd depends
strongly on the actual coverage as will be discussed below.

We have followed the prescription outlined by Bartelt et al. [4] for estimating the coverage
discontinuity and phase boundaries for L → ∞ from three different strip widths. The results as
obtained from L = 6, 8, 10 are shown in fig. 2 for the models with εx = −1.90 and εx = −1.60,
i.e. ∆E = 0.05 and 0.2, respectively. At low temperatures (III), an ordered phase with
θ ≈ 1/2 coexists with a disordered phase of low coverage. At higher temperatures, the system
becomes homogeneously disordered (II) or ordered (I) depending on the coverage. For T → ∞,
we expect the phase boundary (I/II) to approach the θ = 1/2 axis. In this limit the infinite
repulsion should be the only relevant interaction, columns of lattice sites decouple and the
system is always disordered. This is in contrast to hard square models with isotropic NN
repulsion, where an extended regime (I) persists for arbitrary temperature [3, 4].
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Fig. 2 – Phase diagram of the model with εx = −1.90 (left panel) and εx = −1.60 (right panel),
note the different temperature scales. Phase I is homogeneously ordered, in region II the system is
homogeneously disordered, and in III the high- and low-coverage phases coexist. Solid lines represent
the TM extrapolation and symbols (circles) correspond to the results of Monte Carlo simulations
(M = 128 × 128) at constant coverage. The additional dashed lines (squares) indicate the values of
(θ, T ), where cx = cd, hence they separate the region of c(2 × 2) prevalence from the one where the
(2 × 1) structure dominates. Statistical errors would be on the order of 0.05 for all the simulation
data.

As an additional characteristic of the system we have determined the line T (θ) where
cx = cd and extrapolated for L → ∞. Right of the dashed lines in fig. 2, the c(2×2) structure
is prevalent and vice versa. For small coverage, this characteristic line coincides with the
boundary (II/III) of the coexistence region. Hence, for a range of coverages, the transition
into disorder is accompanied by a simultaneous and discontinuous change of local ordering
from c(2 × 2) to (2 × 1) arrangement of Cd atoms.

We obtain also a rough estimate of the phase diagram from additional Monte Carlo simula-
tions at constant coverage. For this purpose, we apply a non-local algorithm which exchanges
empty with occupied sites according to Kawasaki-like rates [23]. The system is again ini-
tialized in an ordered c(2 × 2) configuration for equilibration, and a rapid decrease of m2×2

with increasing T marks the transition into the homogeneously disordered phase. Figure 2
shows in both diagrams the results for M = 128× 128, which are in good agreement with the
TM prediction. Within error bars, we obtain the same results by searching for a pronounced
maximum in the fluctuations of order parameters, correlations, or energy. Note that this
method is not suitable for detecting the transition into the homogeneously ordered region (I):
simulations slow down considerably at almost maximal coverage and, furthermore, (I) and
(III) become virtually indistinguishable in small systems. The transition between (I) and (II)
is continuous in terms of m2×2 and should be Ising-like, details will be published elsewhere.

Figure 2 demonstrates the crucial role that the energy difference ∆E plays for the nature
of the phase transition. With increasing ∆E, the tricritical point shifts to smaller coverage
and higher temperature. Even more so does the line which separates c(2 × 2) from (2 × 1)
prevalence. This feature might offer a qualitative explanation for the remarkable fact that the
transition from c(2×2) to (2×1) prevalence, which was investigated for CdTe in great detail,
has not been found in ZnSe, so far. There, ∆E is expected to be significantly larger than for
CdTe and the region of noticeable (2× 1) dominance should indeed be smaller. Experimental
data indicates that the (2 × 1) ordering is restricted to rather small domains and provides no
evidence of long-range ordering of this type [12].

In summary, our model offers an interpretation of the transition from c(2 × 2) to (2 × 1)
dominance in CdTe(001) as a concomitant phenomenon of an equilibrium phase transition.
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At medium coverage the transition is, with increasing T , from a coexistence regime into a
homogeneously disordered phase. For small enough energy difference ∆E, the phase transition
is accompanied inevitably by a rearrangement of the vacancy structure from c(2 × 2) to local
(2 × 1) ordering.

Of course, some of the detailed experimental findings cannot be accounted for in our
simple model, see, for instance, [12] for particular phenomena related to the relaxation of
surface strain. For a more quantitative comparison with experiments, additional information
is needed. A precise measurement of θ as a function of the temperature is difficult, but would
reveal the path on which the system enters the (2×1)-dominated region in the phase diagram.

In a naive attempt to interpret our results quantitatively, one would identify the dimen-
sionless critical temperature (in units of | εd | = 1) with Tc ≈ 270 ◦C, thus setting the scale for
expressing the energy difference | 2 + εx |/2 in physical units. For example, the model with
εx = −1.94 exhibits the desired transition with θ ≈ 0.4 at a temperature T ≈ 0.3. This would
translate into ∆E ≈ 0.005 eV which is significantly smaller than the value (0.03 eV) given
in [17–19]. DF calculations yield ∆E at T = 0 and the precise effect of higher temperatures
on the relation of (free) energies is unknown. Furthermore, recent calculations have shown
that the DF results are very sensitive (up to a factor of about 2) to the number of atomic
layers considered in the calculation [24]. Hence, a serious quantitative matching is not feasible
unless more reliable estimates of ∆E become available.

Another open question is how our results for small values of θ can be interpreted in the
experimental context. Terminating layers of metal atoms with very low coverage are unstable
in vacuum and the next (metal) layer is uncovered, see, e.g., [10,13,14]. However, the presence
of excess group VI atoms might stabilize an effective equilibrium situation with small metal
coverage. As a test for this hypothesis we suggest to search for the structural transition of
the ZnSe(001) surface under mildly Se-rich conditions.

Our model also opens the possibility to study the shapes and sizes of domains, e.g. the
regions of local (2× 1) dominance in the disordered phase. Experimental data is available for
the pronounced anisotropy of such domains [10]. Furthermore, we will study the equilibrium
shape of isolated islands of atoms and its dependence on the temperature. This should allow
for further comparison with experimental results as reported, for instance, in [14].
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