Characterization of Generalized Haar Spaces

M. Bartelt

Department of Mathematics, Christopher Newport University, Newport News, Virginia 23606, U.S.A. E-mail: mbartelt@pcs.cnu.edu

and

W. Li*

Department of Mathematics and Statistics, Old Dominion University, Norfolk, Virginia 23529, U.S.A.

View metadata, citation and similar papers at core.ac.uk

We say that a subset G of $C_0(T, \mathbb{R}^k)$ is rotation-invariant if $\{Qg: g \in G\} = G$ for any $k \times k$ orthogonal matrix Q. Let G be a rotation-invariant finite-dimensional subspace of $C_0(T, \mathbb{R}^k)$ on a connected, locally compact, metric space T. We prove that G is a generalized Haar subspace if and only if $P_G(f)$ is strongly unique of order 2 whenever $P_G(f)$ is a singleton. \mathbb{C} 1998 Academic Press

1. INTRODUCTION

Let *T* be a locally compact Hausdorff space and *G* a finite-dimensional subspace of $C_0(T, \mathbb{R}^k)$, the space of vector-valued functions *f* on *T* which vanish at infinity, i.e., the set $\{t \in T : ||f(t)||_2 \ge \varepsilon\}$ is compact for every $\varepsilon > 0$. Here $||y||_2 := (\sum_{i=1}^k |y_i|^2)^{1/2}$ denotes the 2-norm on the *k*-dimensional Euclidean space \mathbb{R}^k (of column vectors). For *f* in $C_0(T, \mathbb{R}^k)$, the norm of *f* is defined as

$$||f|| := \sup_{t \in T} ||f(t)||_2.$$

The metric projection P_G from $C_0(T, \mathbb{R}^k)$ to G is given by

$$P_G(f) = \{ g \in G : \| f - g \| = \operatorname{dist}(f, G) \}, \quad \text{for} \quad f \in C_0(T, \mathbb{R}^k),$$

* The research of this author is partially supported by the AFOSR under Grant F49620-95-1-0045 and the NASA/Langley Research Center under Grant NCC-1-68 Supplement-16. where

$$dist(f, G) = inf \{ ||f - g|| : g \in G \}.$$

A subspace G of $C_0(T, \mathbb{R}^k)$ is said to be a Chebyshev subspace if $P_G(f)$ is a singleton for every $f \in C_0(T, \mathbb{R}^k)$. In the Banach space of real-valued continuous functions $C_0(T) \equiv C_0(T, \mathbb{R}^1)$, it is well-known that G is an *n*-dimensional Chebyshev subspace of $C_0(T)$ if and only if G satisfies the Haar condition (i.e., every nonzero g in G has at most (n-1) zeros). The Haar condition not only provides an intrinsic characterization of Chebyshev subspaces of $C_0(T)$, but also ensures strong unicity and Lipschitz continuity of the metric projection P_G , as shown in the following theorem.

THEOREM 1. Suppose that G is an n-dimensional subspace of $C_0(T)$. Then the following are equivalent:

- (i) G satisfies the Haar condition;
- (ii) G is a Chebyshev subspace of $C_0(T)$;

(iii) for every f in $C_0(T)$, $P_G(f)$ is strongly unique, i.e., there exists a constant $\gamma(f) > 0$ such that

$$||f-g|| \ge \operatorname{dist}(f, G) + \gamma(f) \cdot ||g - P_G(f)||, \quad for \quad g \in G;$$

(iv) for every f in $C_0(T)$, $P_G(f)$ is a singleton and P_G is Lipschitz continuous at f, i.e., there exists a constant $\lambda(f) > 0$ such that

$$\|P_G(f) - P_G(h)\| \leq \lambda(f) \cdot \|f - h\|, \quad for \quad h \in C_0(T).$$

Furthermore, if T = [a, b] is a closed subinterval of \mathbb{R} , then all the above are equivalent to the following statement:

(v) $P_G(f)$ is strongly unique whenever $P_G(f)$ is a singleton.

The equivalence of (i) and (ii) is due to Haar [6]. Newman and Shapiro [11] proved that (i) implies (iii). Lipschitz continuity of P_G was proved by Freud in [5] and the equivalence condition (v) was given by McLaughlin and Sommers [10]. See [8] for more details. The above theorem summarizes the implications of the Haar condition in $C_0(T)$. One natural question is what are the implications of the Haar condition for a finite-dimensional subspace of the Banach space, $C_0(T, \mathbb{C})$, of all complex-valued continuous functions on T that vanish at infinity. Newman and Shapiro [11] proved that if $G := \{\sum_{i=1}^{n} c_i g_i(x) : c_i \in \mathbb{C}\}$ is an n-dimensional subspace of $C_0(T, \mathbb{C})$ and satisfies the Haar condition, then G is a Chebyshev subspace

of $C_0(T, \mathbb{C})$ and, for every $f(x) \in C_0(T, \mathbb{C})$, there exists a constant $\gamma(f) > 0$ such that

$$||f-g||^2 \ge \operatorname{dist}(f,G)^2 + \gamma(f) \cdot ||g-P_G(f)||^2, \quad \text{for} \quad g \in G.$$
(1)

The inequality (1) is also referred to as strong unicity of order 2 and is equivalent to the following original form given by Newman and Shapiro:

$$\|f - g\| \ge \operatorname{dist}(f, G) + \beta(f) \cdot \|g - P_G(f)\|^2,$$

for $g \in G$ with $\|g - P_G(f)\| \le 1,$

where $\beta(f)$ is some positive constant. Moreover, the Haar condition is also necessary for a finite-dimensional Chebyshev subspace of $C_0(T, \mathbb{C})$. In fact, an analog of (i)–(iv) of Theorem 1 holds for finite-dimensional Chebyshev subspaces of $C_0(T, \mathbb{R}^k)$, due to the following intrinsic characterization, which we call the generalized Haar condition, of finite-dimensional Chebyshev subspaces of $C_0(T, \mathbb{R}^k)$ given by Zukhovitskii and Stechkin [13].

DEFINITION 2. Let G be an n-dimensional subspace of $C_0(T, \mathbb{R}^k)$ and let m be the maximum integer less than n/k (i.e., $mk < n \le (m+1)k$). Then G is called a generalized Haar space if

(i) every nonzero g in G has at most m zeros;

(ii) for any *m* distinct points t_i in *T* and any *m* vectors $\{x_1, ..., x_m\}$ in \mathbb{R}^k , there is a vector-valued function *p* in *G* such that $p(t_i) = x_i$ for $1 \le i \le m$.

The following analog in $C_0(T, \mathbb{R}^k)$ for parts (i)–(iv) of Theorem 1 was given in [1]. The equivalence (i) \Leftrightarrow (ii) in the following theorem belongs to Zukhovitskii and Stechkin [13].

THEOREM 3. Let G be a finite-dimensional subspace of $C_0(T, \mathbb{R}^k)$. Then the following are equivalent:

- (i) *G* is a generalized Haar subspace.
- (ii) G is a Chebyshev subspace of $C_0(T, \mathbb{R}^k)$.
- (iii) P_G is strongly unique of order 2 at each f in $C_0(T, \mathbb{R}^k)$.

(iv) for every f in $C_0(T, \mathbb{R}^k)$, $P_G(f)$ is a singleton and P_G satisfies a Hölder continuity condition of order $\frac{1}{2}$.

Here the Hölder condition is the analog in $C_0(T, \mathbb{R}^k)$ for Lipschitz continuity in Theorem 1. The metric projection P_G is said to satisfy a Hölder continuity condition of order $\frac{1}{2}$ at f if $P_G(\phi)$ is a singleton for every

 ϕ in $C_0(T, \mathbb{R}^k)$ and there exists a positive number $\lambda = \lambda(f)$ such that $\|P_G(f) - P_G(h)\| \leq \lambda \|f - h\|^{1/2} (1 + \|f + h\|)^{1/2}$ for all h in $C_0(T, \mathbb{R}^k)$.

The main goal of this paper is to present an analog of part (v) of Theorem 1 for finite-dimensional subspaces in $C_0(T, \mathbb{R}^k)$. However, we can only do so under the assumption that G is rotation invariant.

DEFINITION 4. A subspace G of $C_0(T, \mathbb{R}^k)$ is said to be rotationinvariant if $\{Qg : g \in G\} = G$ for any $k \times k$ orthogonal matrix Q.

Note that $C_0(T, \mathbb{C}) \equiv C_0(T, \mathbb{R}^2)$, since

$$f_1(x) + \mathbf{i} f_2(x) \equiv \begin{pmatrix} f_1(x) \\ f_2(x) \end{pmatrix}.$$

Here $\mathbf{i} = \sqrt{-1}$. An *n*-dimensional subspace of $C_0(T, \mathbb{C})$ can be identified with a (2n)-dimensional subspace of $C_0(T, \mathbb{R}^2)$. In fact, one can prove that any rotation invariant finite-dimensional subspace in $C_0(T, \mathbb{R}^2)$ can be identified with a finite-dimensional subspace in $C_0(T, \mathbb{C})$ (cf. Lemma 9). In fact, we consider rotation-invariant subspaces of $C_0(T, \mathbb{R}^k)$ as the natural generalization of complex-valued function subspaces. Now we state the main theorem and present its proof in the next section.

THEOREM 5. Let G be a rotation-invariant finite-dimensional subspace of $C_0(T, \mathbb{R}^k)$, where T is a connected and locally compact metric space. If $P_G(f)$ is strongly unique with order 2 whenever $P_G(f)$ is a singleton, then G is a generalized Haar subspace.

Remark. Theorem 5 holds for any space T which is connected, locally compact, first countable, and Hausdorff because these are the only properties of T used in the proof.

In Lemma 9, we will show that G is rotation-invariant if and only if G is the tensor product of k-copies of a subspace G_1 of $C_0(T)$, i.e., $G = G_1 \times \cdots \times G_1$. Thus, G is a rotation-invariant Chebyshev subspace of $C_0(T, \mathbb{R}^k)$ if and only if G is the tensor product of k-copies of a Haar subspace G_1 of $C_0(T)$.

Note that for k = 1 the result of McLaughlin and Sommers [10] follows from Theorem 5 and, in fact, Theorem 5 gives the following stronger result than that of McLaughlin and Sommers, since the strong unicity of $P_G(f)$ implies the strong unicity of order 2.

COROLLARY 6. Suppose that G is an n-dimensional subspace of $C_0(T)$ and T is a connected and locally compact metric space. Then G is a Haar subspace if $P_G(f)$ is strongly unique of order 2 whenever $P_G(f)$ is a singleton.

2. PROOF OF THE MAIN THEOREM

The proof of Theorem 5 will follow after five lemmas are given. We use $\langle x, y \rangle := \sum_{i=1}^{n} x_i y_i$ to denote the dot product of vectors x and y in \mathbb{R}^k , $\operatorname{supp}(\sigma) := \{t \in T : \sigma(t) \neq 0\}$ for any mapping $\sigma : T \to \mathbb{R}^k$, $Z(g) := \{t \in T : g(t) = 0\}$ for any function g in $C_0(T, \mathbb{R}^k)$, and $Z(K) := \bigcap_{g \in K} Z(g)$ for any subset K of $C_0(T, \mathbb{R}^k)$. For any subset K of $T, G|_K$ denotes the restriction of G on K as a subspace of $C(K, \mathbb{R}^k)$. The boundary and closure of K are denoted by $\operatorname{bd}(K)$ and $\operatorname{cl}(K)$, respectively. For a finite subset T_0 of T, let $\operatorname{card}(T_0)$ be the cardinality of T_0 (i.e., $\operatorname{card}(T_0)$ is the number of points in T_0). A mapping σ from T to \mathbb{R}^k is called an annihilator of G if

$$\sum_{\sigma \in \operatorname{supp}(\sigma)} \langle \sigma(t), g(t) \rangle = 0 \quad \text{for} \quad g \in G.$$

LEMMA 7. Suppose that $G \neq \{0\}$ is a finite-dimensional subspace of $C_0(T, \mathbb{R}^k)$. Then there exists a mapping σ from T to \mathbb{R}^k that has the following properties:

- (a) $supp(\sigma)$ is a finite subset of T;
- (b) $\langle \sigma(t), g(t) \rangle \equiv 0$ whenever $\langle \sigma(t), g(t) \rangle \ge 0$ for $t \in \operatorname{supp}(\sigma)$;

(c) $G_{\sigma} := \{g \in G : \operatorname{supp}(\sigma) \subset Z(g)\}$ satisfies the generalized Haar condition on $T \setminus Z(G_{\sigma})$.

(d) dim $G_{\sigma} \ge 1$.

Proof. We prove the lemma by induction. If dim(G) = 1, then G does satisfy the generalized Haar condition on $T \setminus Z(G)$ and $\sigma(t) \equiv 0$ satisfies the conditions (a)–(d). Suppose that the lemma holds for subspaces of $C_0(T, \mathbb{R}^k)$ with dimension < n and dim G = n. Let (m + 1) be the smallest integer that is greater or equal to n/k. If G satisfies the generalized Haar condition on $T \setminus Z(G)$, let $\sigma(t) \equiv 0$. Then $G_{\sigma} = G$ and we are done. If G does not satisfy the generalized Haar condition on $T \setminus Z(G)$, then either there exists m points $t_1, ..., t_m$ in $T \setminus Z(G)$ such that dim $G|_{\{t_1, ..., t_m\}} < km$ or there exists a nonzero function $g \in G$ such that Z(g) contains (m + 1) points $t_1, ..., t_m, t_{m+1}$. In either case, there exists a finite subset T_0 of $T \setminus Z(G)$ and a nonzero function $g_0(t)$ such that dim $G|_{T_0} < k \operatorname{card}(T_0)$ and $T_0 \subset Z(g_0)$. Since in the Banach space $C(T_0, \mathbb{R}^k) \dim G|_{T_0} < k \operatorname{card}(T_0)$, there exists an annihilator τ of $G|_{T_0}$ with $\operatorname{supp}(\tau) \subset T_0$, so τ annihilates G also. Since $\operatorname{supp}(\tau) \subset T \setminus Z(G)$, dim $G_{\tau} < \dim G$. Since $g_0 \in G_{\tau}$, dim $G_{\tau} \ge 1$. Consider G_{τ} as a subspace defined on $T \setminus Z(G_{\tau})$ to \mathbb{R}^k such that the conditions (a)–(d) hold for $\sigma \equiv \mu$ and $G \equiv G_{\tau}|_{T \setminus Z(G_{\tau})}$.

Let $\sigma(t) := \tau(t)$ for $t \in \text{supp}(\tau)$ and $\sigma(t) = \mu(t)$ for $t \notin \text{supp}(\tau)$. Then it is easy to verify that the conditions (a)–(d) hold for σ .

LEMMA 8. Let K be a subset of G, $t_0 \in \operatorname{bd} Z(K)$, $t_0^i \in T \setminus Z(K)$ such that $t_0^i \to t_0$ as $i \to \infty$, and τ is a continuous mapping defined on $\{t_0, t_0^i: i = 1, 2, ...\}$. Then there exists a function $\overline{g} \in K$ and an index \overline{i} such that $\langle \tau(t_0^i), g(t_0^i) \rangle = 0$ for $i \ge \overline{i}$ whenever

$$\lim_{t \to \infty} \sup \frac{|\langle \tau(t_0^i), g(t_0^i) \rangle|}{|\langle \tau(t_0^i), \bar{g}(t_0^i) \rangle|^{3/2}} \leq 1,$$
(2)

where we define 0/0 := 0.

Proof. Let $\langle \tau, K \rangle := \{ \langle \tau(t), g(t) \rangle : g \in K \}$. Since dim span $\langle \tau, K \rangle |_{\{t_0^j, t_0^{j+1}, \ldots\}}$ is a nonincreasing function of j and has finitely many values, there exists \bar{i} such that dim span $\langle \tau, K \rangle |_{\{t_0^i, t_0^{j+1}, \ldots\}} = \dim \operatorname{span}_{\langle \tau, K \rangle |_{\{t_0^j, t_0^{j+1}, \ldots\}}}$ for $j \ge \bar{i}$. That is, if $j \ge \bar{i}$ and $\langle \tau(t_0^i), g(t_0^i) \rangle = 0$ for $i \ge j$, then $\langle \tau(t), g(t) \rangle = 0$ on $T_0 := \{t_i, t_{i+1, \ldots}\}$.

Let g_1 be a nonzero function in K. (If $K = \{0\}$, then the lemma is trivially true.) If g_1 can not be used as \overline{g} , then there exists a function g_2 in K such that

$$\lim_{i \to \infty} \sup \frac{|\langle \tau(t_0^i), g_2(t_0^i) \rangle|}{|\langle \tau(t_0^i), g_1(t_0^i) \rangle|^{3/2}} \leq 1,$$

but $\langle \tau(t_0^i), g_2(t_0^i) \rangle \neq 0$ for infinitely many *i*'s. By the choice of g_2 , for all *i* sufficiently large, we have

$$|\langle \tau(t_0^i), g_2(t_0^i) \rangle| \leq 2 |\langle \tau(t_0^i), g_1(t_0^i) \rangle|^{3/2}.$$
(3)

We claim that g_1 and g_2 are linearly independent. Let $c_1g_1 + c_2g_2 = 0$. Then for all *i* sufficiently large

$$\begin{split} 0 &= |c_{1} \langle \tau(t_{0}^{i}), g_{1}(t_{0}^{i}) \rangle + c_{2} \langle \tau(t_{0}^{i}), g_{2}(t_{0}^{i}) \rangle | \\ &\geqslant |c_{1} \langle \tau(t_{0}^{i}), g_{1}(t_{0}^{i}) \rangle | - |c_{2} \langle \tau(t_{0}^{i}), g_{2}(t_{0}^{i}) \rangle | \\ &\geqslant |c_{1} \langle \tau(t_{0}^{i}), g_{1}(t_{0}^{i}) \rangle | - 2 |c_{2} \langle \tau(t_{0}^{i}), g_{1}(t_{0}^{i}) \rangle |^{3/2} \\ &= |\langle \tau(t_{0}^{i}), g_{1}(t_{0}^{i}) \rangle | (|c_{1}| - 2 |c_{2}| \langle \tau(t_{0}^{i}), g_{1}(t_{0}^{i}) \rangle^{1/2}). \end{split}$$
(4)

Since $|c_2 \langle \tau(t_0^i), g_1(t_0^i) \rangle|^{1/2} \to 0$ as $i \to \infty$, it follows from (3) and (4) using those *i* for which $\langle \tau(t_0^i), g_2(t_0^i) \rangle \neq 0$ that $c_1 = 0$. Since g_2 is a nonzero function, $c_2 g_2 = 0$ implies $c_2 = 0$. Hence, g_1 and g_2 are linearly independent.

If g_2 can not be used as \bar{g} , then there exists a function g_3 in K such that $\langle \tau(t_0^i), g_3(t_0^i) \rangle \neq 0$ for infinitely many *i* (possibly different from where $\langle \tau(t_0^i), g_2(t_0^i) \rangle \neq 0$) and

$$\lim \sup_{i \to \infty} \frac{|\langle \tau(t_0^i), g_3(t_0^i) \rangle|}{|\langle \tau(t_0^i), g_2(t_0^i) \rangle|^{3/2}} \leq 1.$$
(5)

By (2) and (5), for all *i* sufficiently large, we have

$$|\langle \tau(t_0^i), g_3(t_0^i) \rangle| \leq 2 |\langle \tau(t_0^i), g_2(t_0^i) \rangle|^{3/2} \leq 4 |\langle \tau(t_0^i), g_1(t_0^i) \rangle|^{9/4}.$$
 (6)

Now suppose that $c_1 g_1 + c_2 g_2 + c_3 g_3 = 0$. By (4) and (6), we get that, for all *i* sufficiently large,

$$\begin{split} 0 &= |c_1 \langle \tau(t_0^i), g_1(t_0^i) \rangle + c_2 \langle \tau(t_0^i), g_2(t_0^i) \rangle + c_3 \langle \tau(t_0^i), g_3(t_0^i) \rangle | \\ &\geqslant |\langle \tau(t_0^i), g_1(t_0^i) \rangle| (|c_1| - 2 | c_2| | \langle \tau(t_0^i), g_1(t_0^i) \rangle|^{1/2} \\ &- 4 | c_3| | \langle \tau(t_0^i), g_1(t_0^i) \rangle|^{5/4}). \end{split}$$

Using those *i* for which $\langle \tau(t_0^i), g_1(t_0^i) \rangle \neq 0$ as above we obtain $c_1 = 0$. Then from $c_2g_2 + c_3g_3 = 0$ we obtain as above

$$\begin{aligned} 0 &= |c_2 \langle \tau(t_0^i), \, g_2(t_0^i) \rangle + c_3 \langle \tau(t_0^i), \, g_3(t_0^i) \rangle | \\ &\geqslant |\langle \tau(t_0^i), \, g_2(t_0^i) \rangle |(|c_2| - 2 |c_3| \cdot |\langle \tau(t_0^i), \, g_2(t_0^i) \rangle |^{1/2}) \end{aligned}$$

and using those *i* for which $\langle \tau(t_0^i), g_2(t_0^i) \rangle \neq 0$ we obtain $c_2 = 0$. Since $g_3 \neq 0$ and $c_3 g_3 = 0$, we have $c_3 = 0$. Therefore, g_1, g_2, g_3 are linearly independent.

If no function in K can be used as \overline{g} then continuing in this manner we can construct infinitely many linearly independent functions g_1, g_2, \dots in K. Since G is finite-dimensional, this is impossible.

LEMMA 9. Suppose that G is a rotation-invariant finite dimensional subspace of $C_0(T, \mathbb{R}^k)$. Then m := n/k is an integer and G is the tensor product of k-copies of an m-dimensional subspace G_1 of $C_0(T)$, i.e.,

$$G = \left\{ \sum_{i=1}^{k} g_i e_i : g_i \in G_1 \text{ for } 1 \leq i \leq k \right\},\$$

where e_i is the *i*th canonical basis vector for \mathbb{R}^k (i.e., all components of e_i are zero except that the *i*th component is 1).

Proof. If g is in G, then $g = \sum_{i=1}^{k} g_i e_i$ where $g_i \in C_0(T, \mathbb{R}^1)$. Let $G_i := \{g_i : g = \sum_{j=1}^{k} g_j e_j \in G\}$ for i = 1, ..., k. Then it is obvious that

 $G \subset G_1 \times \cdots \times G_k$ ($\equiv \{\sum_{i=1}^k g_i e_i : g_i \in G_i\}$). For a fixed *i*, let Q_i be the $k \times k$ orthogonal matrix whose *j*th column is e_j for $j \neq i$ and $-e_i$ for j = i. For any $g_i \in G_i$, there exists $g_j \in G_j$ for $j \neq i$ such that $g := \sum_{j=1}^k g_j e_j \in G$. Then $Q_i g \in G$ and $g_i e_i = \frac{1}{2}(g - Q_i g) \in G$. Thus, $G_1 \times \ldots \times G_k \subset G$, which implies $G = G_1 \times \cdots \times G_k$.

Now we show that $G_i \equiv G_1$ for $1 \leq i \leq k$. Let B_i be the orthogonal matrix that as e_i has its first column, e_1 as its *i*th column, e_j as its *j*th column for $j \neq 1$ or *i*. For any $g_1 \in G_1$ and $g_i \in G_i$, we have $g_i e_1 = B_i(g_i e_i) \in G$ and $g_1 e_i = B_i(g_1 e_1) \in G$. Hence, $g_i \in G_1$ and $g_1 \in G_i$. So $G_1 = G_2 = \cdots = G_k$ and $G = \{\sum_{i=1}^k g_i e_i : g_i \in G_1 \text{ for } 1 \leq i \leq k\}$.

LEMMA 10. Suppose that G is a generalized Haar subspace of $C_0(T, \mathbb{R}^k)$ and dim G = mk. Then, for any given m distinct points $t_1, ..., t_m$ in T and m vectors $x_1, ..., x_m$ in \mathbb{R}^k , there exists a function g in G such that $g(t_i) = x_i$ for i = 1, ..., m.

Proof. We show that dim $G|_{\{t_1,...,t_m\}} = \dim G$. If not then there exists a $\bar{g} \neq 0$ in G such that $\bar{g}(t_i) = 0$, i = 1, ..., m. But this contradicts the fact that G is a generalized Haar set and therefore any function in G has at most (m-1) zeroes. Since dim G = mk and dim $C(\{t_1, ..., t_m\}, \mathbb{R}^k) = mk$ the result follows.

Proof of Theorem 5. By Lemma 7, there exists a mapping σ from T into \mathbb{R}^k such that the conditions (a)–(d) in Lemma 7 hold. It follows that if G is not a generalized Haar subspace, then $Z(G_{\sigma}) \neq \emptyset$. Since $Z(G_{\sigma})$ is closed and T is connected, bd $Z(G_{\sigma})$ contains at least one point, say t_0 . Let $\{t_0^i\}_{i=1}^{\infty}$ be a sequence of distinct points in $T \setminus Z(G_{\sigma})$ such that $\lim_{i \to \infty} t_0^i = t_0$.

Since G is rotation-invariant, it is easy to verify that G_{σ} is rotationinvariant and hence dim $G_{\sigma} = km$ for some integer m. Choose m distinct points $\{t_1, ..., t_m\}$ in $T \setminus (\{t_0, t_0^i, i = 1, ...\} \cup Z(G_{\sigma}))$. Notice then that $\{t_1, ..., t_m\} \cap \operatorname{supp}(\sigma) = \emptyset$. Then by Lemma 10, for any vectors $x_1, ..., x_m$ in \mathbb{R}^k , there exists a function g in G_{σ} such that $g(t_j) = x_j$, for j = 1, ..., m. Since, for fixed i, dim $G_{\sigma}|_{\{t_1^i, t_1, ..., t_m\}} < k(m+1)$, there exists an annihilator τ_i of G_{σ} such that $\operatorname{supp}(\tau_i) \subset \{t_0^i, t_1, ..., t_m\}$. By the interpolation property of G_{σ} on any m points of $T \setminus Z(G_{\sigma})$, $\operatorname{supp}(\tau_i)$ must have (m+1) points. Thus,

$$supp(\tau_i) = \{t_0^i, t_1, ..., t_m\}.$$

Without loss of generality, we may assume that there exist unit vectors in \mathbb{R}^k , $\tau(t_0)$, $\tau(t_1)$, ..., $\tau(t_m)$, such that

$$\lim_{i \to \infty} \operatorname{sgn}(\tau_i(t_0^i)) = \tau(t_0)$$

$$\lim_{i \to \infty} \operatorname{sgn}(\tau_i(t_j)) = \tau(t_j), \quad \text{for} \quad j = 1, ..., m.$$

If t_0 is in $\operatorname{supp}(\sigma)$, we may assume that $\operatorname{sgn}(\sigma(t_0)) = \tau(t_0)$. Otherwise, we can replace τ_i by $Q\tau_i$, where Q is an orthogonal matrix such that $Q\tau(t_0) = \operatorname{sgn}(\sigma(t_0))$. (Here the rotation-invariance of G is used.)

Let $\tau(t_0^i) = \operatorname{sgn}(\tau_i(t_0^i))$. Then τ is a continuous function on the closed set

$$A := \{t_0, t_0^i : i = 1, 2, ...\}.$$
(7)

Let $K = \{g \text{ in } G_{\sigma} : g \neq 0 \text{ and, for } 1 \leq j \leq m \text{ either } g(t_j) = 0 \text{ or } \langle g(t_j), \tau(t_j) \rangle > 0 \}$. Since G_{σ} is a generalized Haar set on $T \setminus Z(G_{\sigma})$, it follows that $K \neq \emptyset$ and if g is in K then for at least one j, $g(t_j) \neq 0$. Let \overline{g} in K be the function given by Lemma 8.

Now follows a lengthy construction of a function f in $C_0(T, \mathbb{R}^k)$. First let $\overline{t} \in (\operatorname{supp}(\sigma) \cup \{t_1, ..., t_m\}) \setminus \{t_0\}$. Then, for t in a sufficiently small neighborhood of each such \overline{t} , define

$$\bar{f}(t) = \begin{cases} \operatorname{sgn}(\sigma(\bar{t}))(1 - \|g(\bar{t})\|_2) & \text{if} \quad \bar{t} \in \operatorname{supp}(\sigma) \setminus \{t_0\} \\ \tau(\bar{t})(1 - \|\bar{g}(t)\|_2) & \text{if} \quad \bar{t} = t_j \in \{t_1, ..., t_m\}, \ \bar{g}(t_j) = 0 \\ \tau(\bar{t}) & \text{if} \quad \bar{t} = t_j \in \{t_1, ..., t_m\}, \ \bar{g}(t_j) \neq 0. \end{cases}$$

Then, for $\varepsilon > 0$ small enough and t near \overline{t} in supp (σ) ,

$$\begin{split} \|\bar{f}(t) - \varepsilon \bar{g}(t)\|_{2} &= \|(1 - \|\bar{g}(t)\|_{2}) \operatorname{sgn} \sigma(\bar{t}) - \varepsilon \bar{g}(t)\|_{2} \\ &\leq 1 - \|\bar{g}(t)\|_{2} + \varepsilon \|\bar{g}(t)\|_{2} \leq 1, \end{split}$$

and, similarly, $\|\bar{f}(t) - \varepsilon \bar{g}(t)\| \leq 1$ for t near t_j in $\{t_1, ..., t_m\}$ if $\bar{g}(t_j) = 0$. If $\bar{g}(t_j) \neq 0$, then $\langle \bar{g}(t_j), \tau(t_j) \rangle = \langle \bar{g}(t_j), \bar{f}(t_j) \rangle > 0$ and, by the continuity of \bar{g} , $\langle \bar{g}(t), \tau(t_j) \rangle > \delta > 0$ for t near t_j . Thus, for t near t_j ,

$$\begin{split} \|\bar{f}(t) - \varepsilon \bar{g}(t)\|_{2}^{2} &= \|\tau(t_{j})\|^{2} - 2\varepsilon \langle \bar{g}(t_{j}), \tau(t_{j}) \rangle + \varepsilon^{2} \|\bar{g}(t)\|_{2}^{2} \\ &\leq 1 - 2 \, \delta \varepsilon + \varepsilon^{2} \|\bar{g}\| < 1, \end{split}$$

if $\varepsilon > 0$ is small enough. Therefore, for a sufficiently small neighborhood W_1 of $[(\operatorname{supp}(\sigma) \cup \{t_1, ..., t_m\}) \setminus \{t_0\}, \overline{f}$ is continuous and

$$\|\bar{f}(t) - \varepsilon \bar{g}(t)\|_2 \leqslant 1, \tag{8}$$

if $t \in W_1$ and $\varepsilon > 0$ is small enough.

Let $\overline{f}(t)$ and $\overline{h}(t)$ be defined on the closed set A (cf. (7)) by

$$\bar{h}(t) = \operatorname{sgn}(\tau_i(t)) \equiv \tau(t),$$

and

$$\bar{f}(t) = \bar{h}(t)(1 - |\langle \bar{h}(t), \bar{g}(t) \rangle|^{3/2}),$$

where $t = t_0$, t_0^i for i = 1, 2, ... Now we show that there exists an index i_0 such that $\langle \bar{h}(t_0^i), \bar{g}(t_0^i) \rangle \neq 0$ for $i \ge i_0$. First observe that since \bar{g} is in G_{σ} , τ_i annihilates G_{σ} , and $\operatorname{supp}(\tau_i) = \{t_0^i, t_1, ..., t_m\}$, we get

$$0 = \langle \tau_i(t_0^i), \, \bar{g}(t_0^i) \rangle + \sum_{j=1}^m \langle \tau_i(t_j), \, \bar{g}(t_j) \rangle.$$

$$(9)$$

Since \bar{g} is in K, by the definition, we have either $\bar{g}(t_i) = 0$ or

$$0 < \langle \bar{g}(t_j), \tau(t_j) \rangle = \lim_{t \to \infty} \frac{\langle \bar{g}(t_j), \tau_i(t_j) \rangle}{\|\tau_i(t_j)\|_2}.$$
 (10)

However, (10) implies that $\langle \bar{g}(t_j), \tau_i(t_j) \rangle > 0$ for *i* large enough whenever $\bar{g}(t_j) \neq 0$. Since there is at least one *j* with $\bar{g}(t_j) \neq 0$, it follows from (9) that $\langle \tau_i(t_0^i), \bar{g}(t_0^i) \rangle < 0$ (i.e., $\langle \bar{h}(t_0^i), \bar{g}(t_0^i) \rangle < 0$) for *i* large enough. Thus, for $i \ge i_0$, $\|\bar{f}(t_0^i)\|_2 < 1$ and $\|\bar{f}(t_0)\|_2 = 1$. Since $\lim_{i \to \infty} t_0^i = t_0$ and *T* is locally compact Hausdorff, there exist open sets *W* and *V* with compact closures such that $t_0 \in V$, $[(\operatorname{supp}(\sigma) \cup \{t_1, ..., t_m\}) \setminus \{t_0\}] \subset W$, and $\operatorname{cl}(W) \cap \operatorname{cl}(V) = \emptyset$. Choose i_0 large enough such that $t_0^i \in V$ for $i \ge i_0$. Choose $W \subset W_1$ so that (8) holds for $t \in W$ and $\varepsilon > 0$ small enough. By relabeling of t_0^i , we may assume without loss of generality that $t_0^i \in V$ for all *i* and

$$\|\bar{f}(t_0^i)\|_2 < 1, \quad \text{for} \quad i = 1, 2, \dots.$$
 (11)

Now \bar{h} can be extended from the closed set A (cf. (7)) to a continuous function h(t) on the open set V with $A \subseteq V$ and $||h(t)||_2 \equiv 1$, $t \in V$, by Tietze's Extension Theorem for locally compact Hausdorff spaces [12, p. 385] and the proof of Corollary 5.3 [4, p. 151]. Let $\bar{f}(t) = h(t)$ $(1 - |\langle h(t), \bar{g}(t) \rangle|^{3/2})$ for t in V. Since $B = cl(V) \cup cl(W)$ is compact, we can extend \bar{f} from B to a function F on all of T with F in $C_c(T, \mathbb{R}^k)$ (the collection of functions in $C_0(T, \mathbb{R}^k)$ whose supports are compact) and $||F(t)||_2 \leq 1$. Let

$$D := \{t_0\} \cup \{t_1, ..., t_m\} \cup \operatorname{supp}(\sigma) \cup \{t_0^i : \langle h(_0^i), g(\bar{t}_0^i) \rangle \neq 0\}$$

Then *D* is a G_{δ} set, there exists [4, p. 148] a function ϕ in $C_c(T, \mathbb{R})$ with $0 \le \phi(t) \le 1$ and $\phi^{-1}(1) = D$. Thus $f = \phi F$ is an extension of \overline{f} from $W \cup V$ to *T* which satisfies the following conditions:

$$f(t) = \begin{cases} \operatorname{sgn}(\sigma(t)) & \text{for } t \text{ in } \operatorname{supp}(\sigma), \\ \operatorname{sgn}(\tau(t)) & \text{for } t \text{ in } \{t_1, \dots, t_m\}, \end{cases}$$
(12)

$$||f(t)||_2 < 1 \text{ if } t \neq 0 \text{ and } t \in V, \text{ and } ||f(t_0)||_2 = 1,$$
 (13)

$$\|f(t_0^i)\|_2 = 1 - |\langle h(t_0^i), \, \bar{g}(t_0^i) \rangle|^{3/2} \text{ if } \langle h(t_0^i), \, g(\bar{t}_0^i) \rangle \neq 0, \tag{14}$$

$$\|f(t)\|_{2} \leq \|h(t)\|_{2} \left(1 - |\langle h(t), \bar{g}(t) \rangle|^{3/2}\right) \quad \text{for} \quad t \in V,$$
(15)

$$||h(t)||_2 = 1$$
 if t is in V , (16)

$$h(t_0^i) = \tau_i(t_0^i) = \tau(t_0^i), \qquad i \ge i_0, \tag{17}$$

and

$$\|f(t) - \varepsilon \overline{g}(t)\|_2 \leq 1 \quad \text{if} \quad \varepsilon \leq \varepsilon_0 \text{ and } t \notin V, \tag{18}$$

where $\varepsilon_0 > 0$ is a small positive number. Note that (18) was verified for \overline{f} and t in W, now $\overline{f}(t)$ is replaced by $\phi(t) \overline{f}(t)$ for $0 < \phi(t) \le 1$ and the same calculation shows (18) still holds for $t \in W$. However, $\sup \{ \|f(t)\|_2 : t \notin (V \cup W) \} < 1$ since V and W are open sets containing the only points where f has norm 1. Thus, (18) holds for f and $t \notin V$.

We claim that $P_G(f) = 0$. First it is shown that if g is in $P_G(f)$ and $g \neq 0$, then g is in K and thus in G_{σ} . If g is in $P_G(f)$, it is easy to verify that since $||f-g|| \leq 1$ it follows that $\langle g(t), \sigma(t) \rangle \ge 0$ for t in $\operatorname{supp}(\sigma)$. Thus, by Lemma 7(b), $\langle g(t), \sigma(t) \rangle = 0$ for t in $\operatorname{supp}(\sigma)$. Thus, for t in $\operatorname{supp}(\sigma)$, we have (g(t), f(t)) = 0, and

$$1 = \|f\| \ge \|f(t) - g(t)\|_{2}^{2} = \|f(t)\|_{2}^{2} + \|g(t)\|_{2}^{2} = 1 + \|g(t)\|_{2}^{2}.$$

As a result, g(t) = 0 for t in supp (σ) and g is in G_{σ} . Similarly, one can show that $\langle g(t_j), \tau(t_j) \rangle \ge 0$ for j = 1, ..., m, and $g(t_j) = 0$ whenever $\langle g(t_j), \tau(t_j) \rangle = 0$. Hence if $g \neq 0$, then g is in K.

Now we show that for any nonzero g in $P_G(f)$,

$$\lim_{i \to \infty} \sup \frac{|\langle \tau(t_0^i), g(t_0^i) \rangle|}{|\langle \tau(t_0^i), \bar{g}(t_0^i) \rangle|^{3/2}} > 2.$$
(19)

If not, then

$$\lim_{i \to \infty} \sup \frac{|\langle \tau(t_0^i), \frac{1}{2}g(t_0^i) \rangle|}{|\langle \tau(t_0^i), \overline{g}(t_0^i) \rangle|^{3/2}} \leq 1.$$

Since $g \in K$, it is easy to verify that $\frac{1}{2}g \in K$. By Lemma 8, $\langle \tau(t_0^i), g(t_0^i) \rangle = 0$, for $i \ge \overline{\iota}$. (We may assume that $\overline{\iota} \ge \iota_0$.) Now τ_i annihilates $G_{\sigma}, g \in G_{\sigma}$, and $\operatorname{supp}(\tau_i) = \{t_0^i, t_1, ..., t_m\}$. Thus,

$$0 = \sum_{t \in \operatorname{supp}(\tau_i)} \langle g(t), \tau_i(t) \rangle = \langle \tau_i(t_0^i), g(t_0^i) \rangle + \sum_{j=1}^m \langle \tau_i(t_j), g(t_j) \rangle,$$

and by the definition of $\tau(t)$,

$$0 = \langle \tau(t_0^i), g(t_0^i) \rangle = \langle \operatorname{sgn}(\tau_i(t_0^i), g(t_0^i)) \rangle = \frac{\langle \tau_i(t_0^i), g(t_0^i) \rangle}{\|\tau_i(t_0^i)\|}.$$

Hence, $\langle \tau_i(t_0^i), g(t_0^i) \rangle = 0$. Since τ_i is an annihilator of $G_{\sigma}, g \in K \subset G_{\sigma}$, and $\operatorname{supp}(\tau_i) = \{t_0^i, t_1, ..., t_m\}$, we obtain

$$\sum_{i=1}^{m} \langle \tau_i(t_j), g(t_j) \rangle = \sum_{t \in \operatorname{supp}(\tau_i)} \langle \tau_i(t), g(t) \rangle = 0.$$
(20)

Since g is in K, $g(t_j) = 0$ or $\langle g(t_j), \tau(t_j) \rangle > 0$ for j = 1, ..., m. If $\langle g(t_j), \tau(t_j) \rangle > 0$ then for *i* sufficiently large $\langle \tau_i(t_j), g(t_j) \rangle > 0$. Thus from (20) it follows that $g(t_j) = 0, j = 1, ..., m$. But then $g \equiv 0$ since G_{σ} is a generalized Haar set on $G \setminus Z(G_{\sigma})$ and this contradicts the assumption that $g \neq 0$, and thus (19) holds.

Now with nonzero g in $P_G(f)$ from (19) it follows that for infinitely many indices *i*,

$$|\langle \tau(t_0^i), g(t_0^i) \rangle| > 2 |\langle \tau(t_0^i), \bar{g}(t_0^i) \rangle|^{3/2}.$$
 (21)

Since τ_i is an annihilator of G_{σ} , the above inequality implies that, for infinitely many *i*'s

$$\|\tau_i(t_0^i)\|_2 \langle \tau(t_0^i), g(t_0^i) \rangle = -\sum_{j=1}^m \langle \tau_i(t_j), g(t_j) \rangle < 0.$$
(22)

Thus,

$$\|f(t_{0}^{i}) - g(t_{0}^{i})\|_{2}^{2} = \|\langle \tau(t_{0}^{i}), f(t_{0}^{i}) - g(t_{0}^{i}) \rangle \tau(t_{0}^{i})\|_{2}^{2} + \|f(t_{0}^{i}) - g(t_{0}^{i}) - \langle \tau(t_{0}^{i}), f(t_{0}^{i}) - g(t_{0}^{i}) \rangle \tau(t_{0}^{i})\|_{2}^{2} = \|\|f(t_{0}^{i})\|_{2} - \langle \tau(t_{0}^{i}), g(t_{0}^{i}) \rangle \|^{2} + \|g(t_{0}^{i}) - \langle \tau(t_{0}^{i}), g(t_{0}^{i}) \rangle \tau(t_{0}^{i})\|_{2}^{2},$$
(23)

where the first equality is an orthogonal decomposition of the error vector and then we use the definition of f(t) to simplify the expression.

We continue the estimate of $||f(t_0^i) - g(t_0^i)||_2^2$ by using indices *i* for which (21) and (22) hold. Then

$$\|f(t_{0}^{i}) - g(t_{0}^{i})\|_{2}^{2} \ge (\|f(t_{0}^{i})\|_{2} + |\langle \tau(t_{0}^{i}), g(t_{0}^{i})\rangle|)^{2}$$
$$\ge \|f(t_{0}^{i})\|_{2}^{2} + 2 \|f(t_{0}^{i})\|_{2} |\langle \tau(t_{0}^{i}), g(t_{0}^{i})\rangle|.$$
(24)

Note that $\phi(t_0^i) = 1$ and $f(t_0^i) = h(t_0^i)(1 - |\langle h(t_0^i), \bar{g}(t_0^i) \rangle|^{3/2})$. Thus,

$$\|f(t_0^i)\|_2^2 = (1 - |\langle h(t_0^i), \bar{g}(t_0^i) \rangle|^{3/2})^2$$

= $(1 - |\langle \tau(t_0^i), \bar{g}(t_0^i) \rangle|^{3/2})^2$
 $\ge 1 - 2 |\langle \tau(t_0^i), \bar{g}(t_0^i) \rangle|^{3/2}.$ (25)

Since $||f(t_0^i)||_2 \to 1$ and $|\langle \tau(t_0^i), \bar{g}(t_0^i) \rangle|^{1/2} \to 0$ as $i \to \infty$, we have $2 ||f(t_0^i)||_2 \ge 1$ for *i* sufficiently large. Then, by (24), (25), and (21), we get that for infinitely many *i*'s,

$$\|f(t_0^i) - g(t_0^i)\|_2^2 \ge 1 - 2 |\langle \tau(t_0^i), \bar{g}(t_0^i) \rangle|^{3/2} + |\langle \tau(t_0^i), g(t_0^i) \rangle| > 1.$$

This is impossible, since $g \in P_G(f)$. The contradiction proves our claim that $P_G(f) = \{0\}$.

Next we show that $P_G(f)$ is not strongly unique of order 2 by estimating $||f - \varepsilon \overline{g}||$. By the definition of f(t), for $\varepsilon > 0$ small enough, $||f(t) - \varepsilon \overline{g}(t)||_2 \le 1$ if $t \notin V$ (a neighborhood of t_0) (cf. (18)). If $P_G(f)$ is strongly unique of order 2, then there exists a positive constant γ such that

$$||f - \varepsilon \overline{g}||^2 \ge \operatorname{dist}(f, G)^2 + \gamma \operatorname{dist}(\varepsilon \overline{g}, P_G(f))^2,$$

i.e.,

$$\|f - \varepsilon \bar{g}\|^2 \ge 1 + \gamma \varepsilon^2 \|\bar{g}\|^2.$$
⁽²⁶⁾

Let $t_{\varepsilon} \in V$ be such that

$$\|f(t_{\varepsilon}) - \varepsilon \bar{g}(t_{\varepsilon})\|_{2} = \|f - \varepsilon \bar{g}\| > 1.$$

Since $||f(t)||_2 < 1$ for $t \in V$ and $t \neq t_0$, it follows that $t_{\varepsilon} \to t_0$ as $\varepsilon \to 0^+$. Note that

$$\begin{split} \|f(t_{\varepsilon}) - \varepsilon \bar{g}(t_{\varepsilon})\|_{2}^{2} \\ &= \|f(t_{\varepsilon})\|_{2}^{2} - 2\varepsilon \langle f(t_{\varepsilon}), \, \bar{g}(t_{\varepsilon}) \rangle + \varepsilon^{2} \|\bar{g}(t_{\varepsilon})\|_{2}^{2} \\ &\leq 1 - |\langle h(t_{\varepsilon}), \, \bar{g}(t_{\varepsilon}) \rangle|^{3/2} - 2\varepsilon \langle f(t_{\varepsilon}), \, \bar{g}(t_{\varepsilon}) \rangle + \varepsilon^{2} \|\bar{g}(t_{\varepsilon})\|_{2}^{2}. \end{split}$$

By the above equality, (26), and $\bar{g}(t_{\varepsilon}) \rightarrow 0$ as $\varepsilon \rightarrow 0$, we obtain that, for $\varepsilon > 0$ small enough,

$$\begin{split} 1 + \gamma \varepsilon^2 \|\bar{g}\|^2 &\leqslant \|f - \varepsilon \bar{g}\|^2 \\ &\leqslant 1 - 2\varepsilon \langle f(t_\varepsilon), \, \bar{g}(t_\varepsilon) \rangle - |\langle h(t_\varepsilon), \, \bar{g}(t_\varepsilon) \rangle|^{3/2} + \frac{1}{2} \gamma \varepsilon^2 \|\bar{g}\|^2, \end{split}$$

which implies that

$$-2\varepsilon \langle f(t_{\varepsilon}), \, \bar{g}(t_{\varepsilon}) \rangle - |\langle h(t_{\varepsilon}), \, \bar{g}(t_{\varepsilon}) \rangle|^{3/2} \geq \frac{1}{2} \gamma \varepsilon^{2} \, \|\bar{g}\|^{2}.$$

As a consequence, $\langle f(t_{\varepsilon}), \bar{g}(t_{\varepsilon}) \rangle < 0$ and

$$2\varepsilon |\langle f(t_{\varepsilon}), \, \bar{g}(t_{\varepsilon}) \rangle| \ge |\langle h(t_{\varepsilon}), \, \bar{g}(t_{\varepsilon}) \rangle|^{3/2} + \frac{1}{2}\gamma\varepsilon^2 \, \|\bar{g}\|^2.$$

Since $f(t_{\varepsilon}) = \alpha h(t_{\varepsilon})$ for some $0 \le \alpha \le 1$, the above inequality implies

$$2\varepsilon \left| \left\langle h(t_{\varepsilon}), \, \bar{g}(t_{\varepsilon}) \right\rangle \right| \ge \left| \left\langle h(t_{\varepsilon}), \, \bar{g}(t_{\varepsilon}) \right\rangle \right|^{3/2} + \frac{1}{2}\gamma\varepsilon^2 \, \|\bar{g}\|^2.$$

$$(27)$$

Since $|\langle h(t_{\varepsilon}), \bar{g}(t_{\varepsilon}) \rangle|^{1/2} \to 0$, for $\varepsilon > 0$ small enough,

$$\frac{\gamma \|\bar{g}\|^2}{2} |\langle h(t_{\varepsilon}), \bar{g}(t_{\varepsilon}) \rangle|^{-1/2} > 1.$$
(28)

By (27) and (28),

$$2\varepsilon |\langle h(t_{\varepsilon}), \, \bar{g}(t_{\varepsilon}) \rangle| > \frac{2}{\gamma \, \|\bar{g}\|^2} |\langle h(t_{\varepsilon}), \, \bar{g}(t_{\varepsilon}) \rangle|^2 + \frac{1}{2} \gamma \varepsilon^2 \, \|\bar{g}\|^2.$$
(29)

Equivalently, we have

$$\left(\sqrt{\frac{2}{\gamma \|\bar{g}\|^2}} \left| \langle h(t_{\varepsilon}), \, \bar{g}(t_{\varepsilon}) \rangle \right| - \sqrt{\frac{\gamma \|\bar{g}\|^2}{2}} \varepsilon \right)^2 < 0,$$

which is impossible. Therefore, $P_G(f)$ is not strongly unique of order 2.

REFERENCES

- M. Bartelt and W. Li, Haar theory in vector-valued continuous function spaces, *in* "Approximation Theory VIII," Vol. 1, "Approximation and Interpolation" (C. K. Chui, and L. L. Schumaker, Eds.), pp. 39–46, World Scientific, New York, 1995.
- V. I. Berdyshev, On the uniform continuity of metric projection, *in* "Approximation Theory," Banach Center Publications, Vol. 4, pp. 35–41, PWN–Polish Scientific Publishers, Warsaw, 1979.
- F. Deutsch, Best approximation in the space of continuous vector-valued functions, J. Approx. Theory 53 (1988), 112–116.

- 4. J. Dugundgi, "Topology," Allyn and Bacon, Boston, 1967.
- G. Freud, Eine Ungleichung f
 ür Tschebysheffische approximation Polynome, Acta. Sci. Math. (Szeged) 19 (1958), 162–164.
- A. Haar, Die Minkowski Geometrie und die Annaherung an stetige Funktionen, Math. Ann. 78 (1918), 294–311.
- 7. R. Holmes and B. Kripke, Smoothness of approximation, *Michigan Math. J.* 15 (1968), 225–248.
- 8. W. Li, Strong uniqueness and Lipschitz continuity of metric projection: A generalization of the classical Haar theory, *J. Approx. Theory* **65** (1989), 164–184.
- P. K. Lin, Strongly unique best approximation in uniformly convex Banach spaces, J. Approx. Theory 56 (1989), 101–107.
- H. McLaughlin and K. Sommers, Another characterization of Haar subspaces, J. Approx. Theory 14 (1975), 93–102.
- D. J. Newman and H. S. Shapiro, Some theorems on Chebyshev approximation, *Duke Math. J.* 30 (1963), 673–684.
- 12. W. Rudin, "Real and Complex Analysis," McGraw-Hill, New York, 1980.
- S. I. Zukhovitskii and S. B. Stechkin, On approximation of abstract functions with values in Banach space, *Dokl. Akad. Nauk. SSSR* 106 (1956), 773–776.