268 research outputs found

    Superflares on Ordinary Solar-Type Stars

    Get PDF
    Short duration flares are well known to occur on cool main-sequence stars as well as on many types of `exotic' stars. Ordinary main-sequence stars are usually pictured as being static on time scales of millions or billions of years. Our sun has occasional flares involving up to ∌1031\sim 10^{31} ergs which produce optical brightenings too small in amplitude to be detected in disk-integrated brightness. However, we identify nine cases of superflares involving 103310^{33} to 103810^{38} ergs on normal solar-type stars. That is, these stars are on or near the main-sequence, are of spectral class from F8 to G8, are single (or in very wide binaries), are not rapid rotators, and are not exceedingly young in age. This class of stars includes many those recently discovered to have planets as well as our own Sun, and the consequences for any life on surrounding planets could be profound. For the case of the Sun, historical records suggest that no superflares have occurred in the last two millennia.Comment: 16 pages, accepted for publication in Ap

    The Heavy Element Enrichment of Lyman alpha Clouds in the Virgo Supercluster

    Full text link
    Using high S/N STIS echelle spectra (FWHM=7 km/s) of 3C 273, we constrain the metallicities of two Lya clouds in the vicinity of the Virgo cluster. We detect C II, Si II, and Si III absorption lines in the Lya absorber at z = 0.00530. Previous observations with FUSE have revealed Ly beta - Ly theta lines at this redshift, thereby accurately constraining N(H I). We model the ionization of the gas and derive [C/H] = -1.2^{+0.3}_{-0.2}, [Si/C] = 0.2+/-0.1, and log n_{H} = -2.8+/-0.3. The model implies a small absorber thickness, ~70 pc, and thermal pressure p/k ~ 40 cm^{-3} K. It is most likely that the absorber is pressure confined by an external medium because gravitational confinement would require a very high ratio of dark matter to baryonic matter. Based on Milky Way sight lines in which carbon and silicon abundances have been reliably measured in the same interstellar cloud (including new measurements presented herein), we argue that the overabundance of Si relative to C is not due to dust depletion. Instead, this probably indicates that the gas has been predominately enriched by Type II supernovae. Such enrichment is most plausibly provided by an unbound galactic wind, given the absence of galaxies within a projected distance of 100 kpc and the presence of galaxies capable of driving a wind at larger distances. We also constrain the metallicity and physical conditions of the Virgo absorber at z = 0.00337 based on detections of O VI and H I and an upper limit on C IV. If this absorber is collisionally ionized, the O VI/C IV limit requires T > 10^{5.3} K. For either collisional ionization or photoionization, we find that [O/H] > -2.0 at z = 0.00337.Comment: Final Ap.J. versio

    Evidence of a Supermassive Black Hole in the Galaxy NGC 1023 from the Nuclear Stellar Dynamics

    Get PDF
    We analyze the nuclear stellar dynamics of the SB0 galaxy NGC 1023, utilizing observational data both from the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope and from the ground. The stellar kinematics measured from these long-slit spectra show rapid rotation (V = 70 km/s at a distance of 0.1 arcsec = 4.9 pc from the nucleus) and increasing velocity dispersion toward the nucleus (where sigma = 295 +/- 30 km/s). We model the observed stellar kinematics assuming an axisymmetric mass distribution with both two and three integrals of motion. Both modeling techniques point to the presence of a central dark compact mass (which presumably is a supermassive black hole) with confidence > 99%. The isotropic two-integral models yield a best-fitting black hole mass of (6.0 +/- 1.4) x 10^7 M_sun and mass-to-light ratio (M/L_V) of 5.38 +/- 0.08, and the goodness-of-fit (chi^2) is insensitive to reasonable values for the galaxy's inclination. The three-integral models, which non-parametrically fit the observed line-of-sight velocity distribution as a function of position in the galaxy, suggest a black hole mass of (3.9 +/- 0.4) x 10^7 M_sun and M/L_V of 5.56 +/- 0.02 (internal errors), and the edge-on models are vastly superior fits over models at other inclinations. The internal dynamics in NGC 1023 as suggested by our best-fit three-integral model shows that the velocity distribution function at the nucleus is tangentially anisotropic, suggesting the presence of a nuclear stellar disk. The nuclear line of sight velocity distribution has enhanced wings at velocities >= 600 km/s from systemic, suggesting that perhaps we have detected a group of stars very close to the central dark mass.Comment: 21 pages, 12 figures, accepted in the Astrophysical Journa

    UV Absorption Lines from High-Velocity Gas in the Vela Supernova Remnant: New insights from STIS Echelle Observations of HD72089

    Get PDF
    The star HD72089 is located behind the Vela supernova remnant and shows a complex array of high and low velocity interstellar absorption features arising from shocked clouds. A spectrum of this star was recorded over the wavelength range 1196.4 to 1397.2 Angstroms at a resolving power lambda/Delta lambda = 110,000 and signal-to-noise ratio of 32 by STIS on the Hubble Space Telescope. We have identified 7 narrow components of C I and have measured their relative populations in excited fine-structure levels. Broader features at heliocentric velocities ranging from -70 to +130 km/s are seen in C II, N I, O I, Si II, S II and Ni II. In the high-velocity components, the unusually low abundances of N I and O I, relative to S II and Si II, suggest that these elements may be preferentially ionized to higher stages by radiation from hot gas immediately behind the shock fronts.Comment: 11 pages, 2 figures, Latex. Submitted for the special HST ERO issue of the Astrophysical Journal Letter

    Observations of H3+ in the Diffuse Interstellar Medium

    Get PDF
    Surprisingly large column densities of H3+ have been detected using infrared absorption spectroscopy in seven diffuse cloud sightlines (Cygnus OB2 12, Cygnus OB2 5, HD 183143, HD 20041, WR 104, WR 118, and WR 121), demonstrating that H3+ is ubiquitous in the diffuse interstellar medium. Using the standard model of diffuse cloud chemistry, our H3+ column densities imply unreasonably long path lengths (~1 kpc) and low densities (~3 cm^-3). Complimentary millimeter-wave, infrared, and visible observations of related species suggest that the chemical model is incorrect and that the number density of H3+ must be increased by one to two orders of magnitude. Possible solutions include a reduced electron fraction, an enhanced rate of H2 ionization, and/or a smaller value of the H3+ dissociative recombination rate constant than implied by laboratory experiments.Comment: To be published in Astrophysical Journal, March 200

    Further Evidence for Chemical Fractionation from Ultraviolet Observations of Carbon Monoxide

    Get PDF
    Ultraviolet absorption from interstellar 12CO and 13CO was detected toward rho Oph A and chi Oph. The measurements were obtained at medium resolution with the Goddard High Resolution Spectrograph on the Hubble Space Telescope. Column density ratios, N(12CO)/N(13CO), of 125 \pm 23 and 117 \pm 35 were derived for the sight lines toward rho Oph A and chi Oph, respectively. A value of 1100 \pm 600 for the ratio N(12C16O)/N(12C18O) toward rho Oph A was also obtained. Absorption from vibrationally excited H_2 (v" = 3) was clearly seen toward this star as well. The ratios are larger than the isotopic ratios for carbon and oxygen appropriate for ambient interstellar material. Since for both carbon and oxygen the more abundant isotopomer is enhanced, selective isotopic photodissociation plays the key role in the fractionation process for these directions. The enhancement arises because the more abundant isotopomer has lines that are more optically thick, resulting in more self shielding from dissociating radiation. A simple argument involving the amount of self shielding [from N(12CO)] and the strength of the ultraviolet radiation field premeating the gas (from the amount of vibrationally excited H_2) shows that selective isotopic photodissociation controls the fractionation seen in these two sight lines, as well as the sight line to zeta Oph.Comment: 40 pages, 8 figures, to appear in 10 July 2003 issue of Ap

    A Pair of Compact Red Galaxies at Redshift 2.38, Immersed in a 100 kpc Scale Ly-alpha Nebula

    Full text link
    We present Hubble Space Telescope (HST) and ground-based observations of a pair of galaxies at redshift 2.38, which are collectively known as 2142-4420 B1 (Francis et al. 1996). The two galaxies are both luminous extremely red objects (EROs), separated by 0.8 arcsec. They are embedded within a 100 kpc scale diffuse Ly-alpha nebula (or blob) of luminosity ~10^44 erg/s. The radial profiles and colors of both red objects are most naturally explained if they are young elliptical galaxies: the most distant yet found. It is not, however, possible to rule out a model in which they are abnormally compact, extremely dusty starbursting disk galaxies. If they are elliptical galaxies, their stellar populations have inferred masses of ~10^11 solar masses and ages of ~7x10^8 years. Both galaxies have color gradients: their centers are significantly bluer than their outer regions. The surface brightness of both galaxies is roughly an order of magnitude greater than would be predicted by the Kormendy relation. A chain of diffuse star formation extending 1 arcsec from the galaxies may be evidence that they are interacting or merging. The Ly-alpha nebula surrounding the galaxies shows apparent velocity substructure of amplitude ~ 700 km/s. We propose that the Ly-alpha emission from this nebula may be produced by fast shocks, powered either by a galactic superwind or by the release of gravitational potential energy.Comment: 33 pages, 9 figures, ApJ in press (to appear in Jun 10 issue

    Spatially Resolved STIS Spectroscopy of SN 1987A: Evidence for Shock Interaction with Circumstellar Gas

    Get PDF
    Visual and ultraviolet spatially resolved (~ 0."1) spectra of SN 1987A obtained on days 3715 and 3743 with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope show that the high-velocity SN debris is colliding with circumstellar gas. Very broad Ly-alpha emission with velocities extending to ~ +/- 20,000 km/s originates inside the inner circumstellar ring and appears to fill most of the surface area within 0."67 +/- 0."03 (0.14 pc at a distance of 50 kpc) of the ring's center. The observed Ly-alpha flux from the shocked ejecta is (1.85 +/- 0.53) 10^{-13} erg/cm2/s and (1.25 +/- 0.51) 10^{-12} erg/cm2/s after correcting for extinction. A spatially unresolved blue-shifted emission feature was discovered in H-alpha (and other lines) on the inner ring at p.a. 31 +/- 8 degree. The H-alpha emission extends to -250 km/s with no corresponding red-shifted emission. This highly localized interaction appears to be the initial contact of the supernova blast wave with an inward protrusion of the inner ring. The broad Ly-alpha emission and the `hot spot' are separate interaction phemonena associated with the reverse and forward shocks, respectively. We also find that the size of the inner ring in forbidden lines of oxygen has a dependence on ionization potential, in agreement with photoionization models of the ring.Comment: 11 pages (LaTeX, aaspp4.sty), 8 figures, accepted for publication in the Astrophysical Journal Letters HST Second Servicing Mission special issu

    Complex C: A Low-Metallicity High-Velocity Cloud Plunging into the Milky Way

    Get PDF
    (Abridged) We present a new high-resolution (7 km/s FWHM) echelle spectrum of 3C 351 obtained with STIS. 3C 351 lies behind the low-latitude edge of high-velocity cloud Complex C, and the new spectrum provides accurate measurements of O I, Si II, Al II, Fe II, and Si III absorption lines at the velocity of the HVC. We use collisional and photoionization models to derive ionization corrections; in both models we find that the overall metallicity Z = 0.1 - 0.3 Z_{solar} in Complex C, but nitrogen must be underabundant. The iron abundance indicates that Complex C contains very little dust. The absorbing gas probably is not gravitationally confined. The gas could be pressure-confined by an external medium, but alternatively we may be viewing the leading edge of the HVC, which is ablating and dissipating as it plunges into the Milky Way. O VI column densities observed with FUSE toward nine QSOs/AGNs behind Complex C support this conclusion: N(O VI) is highest near 3C 351, and the O VI/H I ratio increases substantially with decreasing latitude, suggesting that the lower-latitude portion of the cloud is interacting more vigorously with the Galaxy. The other sight lines through Complex C show some dispersion in metallicity, but with the current uncertainties, the measurements are consistent with a constant metallicity throughout the HVC. However, all of the Complex C sight lines require significant nitrogen underabundances. Finally, we compare the 3C 351 sight line to the sight line to the nearby QSO H1821+643 to search for evidence of outflowing Galactic fountain gas that could be mixing with Complex C. We find that the intermediate-velocity gas detected toward 3C 351 and H1821+643 has a higher metallicity and may well be a fountain/chimney outflow from the Perseus spiral arm.Comment: Submitted to AJ. Figures 1-4 compressed for astro-ph; better quality figures are available at http://astro.princeton.edu/~tripp/astro/qualitypreps/complexc.ps.g

    The Nuclear Dynamics of M32. I. Data and Stellar Kinematics

    Full text link
    We have obtained optical long-slit spectroscopy of the nucleus of M32 using the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope. The stellar rotation velocity and velocity dispersion, as well as the full line-of-sight velocity distribution (LOSVD), were determined as a function of position along the slit using two independent spectral deconvolution algorithms. We see three clear kinematical signatures of the nuclear black hole: a sudden upturn, at ~0.3 arc seconds from the center, in the stellar velocity dispersions; a flat or rising rotation curve into the center; and strong, non-Gaussian wings on the central LOSVD. The central velocity dispersion is ~130 km/s (Gaussian fit) or ~175 km/s (corrected for the wings). Both the velocity dispersion spike and the shape of the central LOSVD are consistent with the presence of a supermassive compact object in M32 with a mass in the range 2-5 x 10^6 solar masses. These data are a significant improvement on previous stellar kinematical data, making M32 the first galaxy for which the imprint of the black hole's gravitation on the stellar velocities has been observed with a resolution comparable to that of gas-dynamical studies.Comment: 55 pages, 17 figures. Submitted to The Astrophysical Journa
    • 

    corecore