Surprisingly large column densities of H3+ have been detected using infrared
absorption spectroscopy in seven diffuse cloud sightlines (Cygnus OB2 12,
Cygnus OB2 5, HD 183143, HD 20041, WR 104, WR 118, and WR 121), demonstrating
that H3+ is ubiquitous in the diffuse interstellar medium. Using the standard
model of diffuse cloud chemistry, our H3+ column densities imply unreasonably
long path lengths (~1 kpc) and low densities (~3 cm^-3). Complimentary
millimeter-wave, infrared, and visible observations of related species suggest
that the chemical model is incorrect and that the number density of H3+ must be
increased by one to two orders of magnitude. Possible solutions include a
reduced electron fraction, an enhanced rate of H2 ionization, and/or a smaller
value of the H3+ dissociative recombination rate constant than implied by
laboratory experiments.Comment: To be published in Astrophysical Journal, March 200