223 research outputs found

    Inverse Compton Scattering as the Source of Diffuse EUV Emission in the Coma Cluster of Galaxies

    Get PDF
    We have examined the hypothesis that the majority of the diffuse EUV flux in the Coma cluster is due to inverse Compton scattering of low energy cosmic ray electrons (0.16 < epsilon < 0.31 GeV) against the 3K black-body background. We present data on the two-dimensional spatial distribution of the EUV flux and show that these data provide strong support for a non-thermal origin for the EUV flux. However, we show that this emission cannot be produced by an extrapolation to lower energies of the observed synchrotron radio emitting electrons and an additional component of low energy cosmic ray electrons is required.Comment: 11 pages, 5 figure

    Nonthermal Bremsstrahlung and Hard X-ray Emission from Clusters of Galaxies

    Get PDF
    We have calculated nonthermal bremsstrahlung (NTB) models for the hard X-ray (HXR) tails recently observed by BeppoSAX in clusters of galaxies. In these models, the HXR emission is due to suprathermal electrons with energies of about 10-200 keV. Under the assumption that the suprathermal electrons form part of a continuous spectrum of electrons including highly relativistic particles, we have calculated the inverse Compton (IC) extreme ultraviolet (EUV), HXR, and radio synchrotron emission by the extensions of the same populations. For accelerating electron models with power-law momentum spectra (N[p] propto p^{- mu}) with mu <~ 2.7, which are those expected from strong shock acceleration, the IC HXR emission exceeds that due to NTB. Thus, these models are only of interest if the electron population is cut-off at some upper energy <~1 GeV. Similarly, flat spectrum accelerating electron models produce more radio synchrotron emission than is observed from clusters if the ICM magnetic field is B >~ 1 muG. The cooling electron model produces vastly too much EUV emission as compared to the observations of clusters. We have compared these NTB models to the observed HXR tails in Coma and Abell 2199. The NTB models require a nonthermal electron population which contains about 3% of the number of electrons in the thermal ICM. If the suprathermal electron population is cut-off at some energy above 100 keV, then the models can easily fit the observed HXR fluxes and spectral indices in both clusters. For accelerating electron models without a cutoff, the electron spectrum must be rather steep >~ 2.9.Comment: Accepted for publication in the Astrophysical Journal. 10 pages with 5 embedded Postscript figures in emulateapj.sty. An abbreviated abstract follow

    Cosmic Ray Electrons in Groups and Clusters of Galaxies: Primary and Secondary Populations from a Numerical Cosmological Simulation

    Get PDF
    We study the generation and distribution of high energy electrons in cosmic environment and their observational consequences by carrying out the first cosmological simulation that includes directly cosmic ray (CR) particles. Starting from cosmological initial conditions we follow the evolution of primary and secondary electrons (CRE), CR ions (CRI) and a passive magnetic field. CRIs and primary CREs are injected and accelerated at large scale structure shocks. Secondary CREs are continuously generated through inelastic p-p collisions. We include spatial transport, adiabatic expansion/compression, Coulomb collisions, bremsstrahlung, synchrotron (SE)and inverse Compton (IC) emission. We find that, from the perspective of cosmic shock energy and acceleration efficiency, the few detections of hard X-ray radiation excess could be explained in the framework of IC emission of primary CREs in clusters undergoing high accretion/merger phase. Instead, IC emission from both primary and secondary CREs accounts at most for a small fraction of the radiation excesses detected in the extreme-UV (except for the Coma cluster as reported by Bowyer et al.1999). Next, we calculate the SE after normalizing the magnetic field so that for a Coma-like cluster ^1/2~3 \muG. Our results indicate that the SE from secondary CREs reproduces several general properties of radio halos, including the recently found P_1.4GHz vs T relation, the morphology and polarization of the emitting region and, to some extent, the spectral index. Moreover, SE from primary CREs turns out sufficient to power extended regions resembling radio relics observed at the outskirts of clusters. Again we find striking resemblance between morphology, polarization and spectral index of our synthetic maps and those reported in the literature.Comment: emulateapj, 27 pages, 10 figures, 5 tables; ApJ in pres

    Simulating cosmic rays in clusters of galaxies - II. A unified scheme for radio halos and relics with predictions of the gamma-ray emission

    Full text link
    The thermal plasma of galaxy clusters lost most of its information on how structure formation proceeded as a result of dissipative processes. In contrast, non-equilibrium distributions of cosmic rays (CR) preserve the information about their injection and transport processes and provide thus a unique window of current and past structure formation processes. This information can be unveiled by observations of non-thermal radiative processes, including radio synchrotron, hard X-ray, and gamma-ray emission. To explore this, we use high-resolution simulations of a sample of galaxy clusters spanning a mass range of about two orders of magnitudes, and follow self-consistent CR physics on top of the radiative hydrodynamics. We model CR electrons that are accelerated at cosmological structure formation shocks and those that are produced in hadronic interactions of CRs with ambient gas protons. We find that CR protons trace the time integrated non-equilibrium activities of clusters while shock-accelerated CR electrons probe current accretion and merging shock waves. The resulting inhomogeneous synchrotron emission matches the properties of observed radio relics. We propose a unified model for the generation of radio halos. Giant radio halos are dominated in the centre by secondary synchrotron emission with a transition to the synchrotron radiation emitted from shock-accelerated electrons in the cluster periphery. This model is able to explain the observed correlation of mergers with radio halos, the larger peripheral variation of the spectral index, and the large scatter in the scaling relation between cluster mass and synchrotron emission. Future low-frequency radio telescopes (LOFAR, GMRT, MWA, LWA) are expected to probe the accretion shocks of clusters. [abridged]Comment: 32 pages, 19 figures, small changes to match the version to be published by MNRAS, full resolution version available at http://www.cita.utoronto.ca/~pfrommer/Publications/CRs_non-thermal.pd

    A Powerful Radio Halo in the Hottest Known Cluster of Galaxies 1E0657-56

    Get PDF
    We report the detection of a diffuse radio halo source in the hottest known cluster of galaxies 1E0657-56 (RXJ0658-5557). The radio halo has a morphology similar to the X-ray emission from the hot intracluster medium. The presence of a luminous radio halo in such a hot cluster is further evidence for a steep correlation between the radio halo power and the X-ray temperature. We favour models for the origin of radio halo sources involving a direct connection between the X-ray emitting thermal particles and the radio emitting relativistic particles.Comment: 21 pages of text, 9 figures, to appear in Ap

    Properties of Cosmic Shock Waves in Large Scale Structure Formation

    Get PDF
    We have examined the properties of shock waves in simulations of large scale structure formation for two cosmological scenarios (a SCDM and a LCDM with Omega =1). Large-scale shocks result from accretion onto sheets, filaments and Galaxy Clusters (GCs) on a scale of circa 5 Mpc/h in both cases. Energetic motions, both residual of past accretion history and due to current asymmetric inflow along filaments, generate additional, common shocks on a scale of about 1 Mpc/h, which penetrate deep inside GCs. Also collisions between substructures inside GCs form merger shocks. Consequently, the topology of the shocks is very complex and highly connected. During cosmic evolution the comoving shock surface density decreases, reflecting the ongoing structure merger process in both scenarios. Accretion shocks have very high Mach numbers (10-10^3), when photo-heating of the pre-shock gas is not included. The typical shock speed is of order v_{sh}(z) =H(z)lambda_{NL}(z), with lambda_{NL}(z) the wavelength scale of the nonlinear perturbation at the given epoch. However, the Mach number for shocks occuring within clusters is usually smaller (3-10), due to the fact that the intracluster gas is already hot. Statistical fits of shock speed around GCs as a function of GCs temperature give power-law's in accord with 1-D predictions. However, a very different result is obtained for fits of the shock radius, reflecting the very complex shock structures forming in 3-D simulations. The in-flowing kinetic energy across such shocks, giving the power available for cosmic-ray acceleration, is comparable to the cluster X-ray luminosity emitted from a central region of radius 0.5 Mpc/h. Considering their large size and long lifetimes, those shocks are potentially interesting sites for cosmic-ray acceleration, if modest magnetic fields exist within them.Comment: 20 Pages, 11 figures, ApJ in press. Complete set of full resolution figures available at http://www.msi.umn.edu:80/Projects/twj/figures.tar.g

    Milestones in the Observations of Cosmic Magnetic Fields

    Get PDF
    Magnetic fields are observed everywhere in the universe. In this review, we concentrate on the observational aspects of the magnetic fields of Galactic and extragalactic objects. Readers can follow the milestones in the observations of cosmic magnetic fields obtained from the most important tracers of magnetic fields, namely, the star-light polarization, the Zeeman effect, the rotation measures (RMs, hereafter) of extragalactic radio sources, the pulsar RMs, radio polarization observations, as well as the newly implemented sub-mm and mm polarization capabilities. (Another long paragraph is omitted due to the limited space here)Comment: Invited Review (ChJA&A); 32 pages. Sorry if your significant contributions in this area were not mentioned. Published pdf & ps files (with high quality figures) now availble at http://www.chjaa.org/2002_2_4.ht

    A cardinal role for cathepsin D in co-ordinating the host-mediated apoptosis of macrophages and killing of pneumococci

    Get PDF
    The bactericidal function of macrophages against pneumococci is enhanced by their apoptotic demise, which is controlled by the anti-apoptotic protein Mcl-1. Here, we show that lysosomal membrane permeabilization (LMP) and cytosolic translocation of activated cathepsin D occur prior to activation of a mitochondrial pathway of macrophage apoptosis. Pharmacological inhibition or knockout of cathepsin D during pneumococcal infection blocked macrophage apoptosis. As a result of cathepsin D activation, Mcl-1 interacted with its ubiquitin ligase Mule and expression declined. Inhibition of cathepsin D had no effect on early bacterial killing but inhibited the late phase of apoptosis-associated killing of pneumococci in vitro. Mice bearing a cathepsin D-/- hematopoietic system demonstrated reduced macrophage apoptosis in vivo, with decreased clearance of pneumococci and enhanced recruitment of neutrophils to control pulmonary infection. These findings establish an unexpected role for a cathepsin D-mediated lysosomal pathway of apoptosis in pulmonary host defense and underscore the importance of apoptosis-associated microbial killing to macrophage function

    Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis

    Get PDF
    Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (-3.2 SD score vs. -2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man
    corecore