55 research outputs found

    Characterization of Nonjunctional Hemichannels in Caterpillar Cells

    Get PDF
    Recent studies have demonstrated that hemichannels, which form gap junctions when paired from apposing cells, may serve additional roles when unpaired including cell adhesion and paracrine communication. Hemichannels in mammals are formed by connexins or pannexins, while in insects they are formed by pannexin homologues termed innexins. The formation of functional gap junctions by insect innexins has been established, although their ability to form functional nonjunctional hemichannels has not been reported. Here the characteristics of nonjunctional hemichannels were examined in three lepidopteran cell types, two cell lines (High Five and Sf9) and explanted hemocytes from Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae). Selective fluorescent dye uptake by hemichannels was observed in a significant minority of cells, using fluorescence microscopy and flow cytometry. Carbenoxelone, an inhibitor of mammalian junctions, disrupted dye uptake, while flufenamic acid and mefloquine did not. The presence of Ca2+ and Mg2+ in the media increased hemichannel activity. Additionally, lipopolysaccharide, a stimulator of immune activity in lepidopterans, decreased dye uptake. These results demonstrate for the first time the activity of nonjunctional hemichannels in insect cells, as well as pharmacological tools to manipulate them. These results will facilitate the further examination of the role of innexins and nonjunctional hemichannels in insect cell biology, including paracrine signaling, and comparative studies of mammalian pannexins and insect innexins

    Differentially altered Ca2+ regulation and Ca2+ permeability in Cx26 hemichannels formed by the A40V and G45E mutations that cause keratitis ichthyosis deafness syndrome

    Get PDF
    Mutations in GJB2, which encodes Cx26, are one of the most common causes of inherited deafness in humans. More than 100 mutations have been identified scattered throughout the Cx26 protein, most of which cause nonsyndromic sensorineural deafness. In a subset of mutations, deafness is accompanied by hyperkeratotic skin disorders, which are typically severe and sometimes fatal. Many of these syndromic deafness mutations localize to the amino-terminal and first extracellular loop (E1) domains. Here, we examined two such mutations, A40V and G45E, which are positioned near the TM1/E1 boundary and are associated with keratitis ichthyosis deafness (KID) syndrome. Both of these mutants have been reported to form hemichannels that open aberrantly, leading to “leaky” cell membranes. Here, we quantified the Ca2+ sensitivities and examined the biophysical properties of these mutants at macroscopic and single-channel levels. We find that A40V hemichannels show significantly impaired regulation by extracellular Ca2+, increasing the likelihood of aberrant hemichannel opening as previously suggested. However, G45E hemichannels show only modest impairment in regulation by Ca2+ and instead exhibit a substantial increase in permeability to Ca2+. Using cysteine substitution and examination of accessibility to thiol-modifying reagents, we demonstrate that G45, but not A40, is a pore-lining residue. Both mutants function as cell–cell channels. The data suggest that G45E and A40V are hemichannel gain-of-function mutants that produce similar phenotypes, but by different underlying mechanisms. A40V produces leaky hemichannels, whereas G45E provides a route for excessive entry of Ca2+. These aberrant properties, alone or in combination, can severely compromise cell integrity and lead to increased cell death

    Green-to-red photoconvertible fluorescent proteins: tracking cell and protein dynamics on standard wide-field mercury arc-based microscopes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Green fluorescent protein (GFP) and other FP fusions have been extensively utilized to track protein dynamics in living cells. Recently, development of photoactivatable, photoswitchable and photoconvertible fluorescent proteins (PAFPs) has made it possible to investigate the fate of discrete subpopulations of tagged proteins. Initial limitations to their use (due to their tetrameric nature) were overcome when monomeric variants, such as Dendra, mEos, and mKikGR were cloned/engineered.</p> <p>Results</p> <p>Here, we report that by closing the field diaphragm, selective, precise and irreversible green-to-red photoconversion (330-380 nm illumination) of discrete subcellular protein pools was achieved on a wide-field fluorescence microscope equipped with standard DAPI, Fluorescein, and Rhodamine filter sets and mercury arc illumination within 5-10 seconds. Use of a DAPI-filter cube with long-pass emission filter (LP420) allowed the observation and control of the photoconversion process in real time. Following photoconversion, living cells were imaged for up to 5 hours often without detectable phototoxicity or photobleaching.</p> <p>Conclusions</p> <p>We demonstrate the practicability of this technique using Dendra2 and mEos2 as monomeric, photoconvertible PAFP representatives fused to proteins with low (histone H2B), medium (gap junction channel protein connexin 43), and high (α-tubulin; clathrin light chain) dynamic cellular mobility as examples. Comparable efficient, irreversible green-to-red photoconversion of selected portions of cell nuclei, gap junctions, microtubules and clathrin-coated vesicles was achieved. Tracking over time allowed elucidation of the dynamic live-cycle of these subcellular structures. The advantage of this technique is that it can be performed on a standard, relatively inexpensive wide-field fluorescence microscope with mercury arc illumination. Together with previously described laser scanning confocal microscope-based photoconversion methods, this technique promises to further increase the general usability of photoconvertible PAFPs to track the dynamic movement of cells and proteins over time.</p

    Connexin43 Modulates Cell Polarity and Directional Cell Migration by Regulating Microtubule Dynamics

    Get PDF
    Knockout mice deficient in the gap junction gene connexin43 exhibit developmental anomalies associated with abnormal neural crest, primordial germ cell, and proepicardial cell migration. These migration defects are due to a loss of directional cell movement, and are associated with abnormal actin stress fiber organization and a loss of polarized cell morphology. To elucidate the mechanism by which Cx43 regulates cell polarity, we used a wound closure assays with mouse embryonic fibroblasts (MEFs) to examine polarized cell morphology and directional cell movement. Studies using embryonic fibroblasts from Cx43 knockout (Cx43KO) mice showed Cx43 deficiency caused cell polarity defects as characterized by a failure of the Golgi apparatus and the microtubule organizing center to reorient with the direction of wound closure. Actin stress fibers at the wound edge also failed to appropriately align, and stabilized microtubule (Glu-tubulin) levels were markedly reduced. Forced expression of Cx43 with deletion of its tubulin-binding domain (Cx43dT) in both wildtype MEFs and neural crest cell explants recapitulated the cell migration defects seen in Cx43KO cells. However, forced expression of Cx43 with point mutation causing gap junction channel closure had no effect on cell motility. TIRF imaging revealed increased microtubule instability in Cx43KO cells, and microtubule targeting of membrane localized Cx43 was reduced with expression of Cx43dT construct in wildtype cells. Together, these findings suggest the essential role of Cx43 gap junctions in development is mediated by regulation of the tubulin cytoskeleton and cell polarity by Cx43 via a nonchannel function

    Simvastatin Sodium Salt and Fluvastatin Interact with Human Gap Junction Gamma-3 Protein

    Get PDF
    Finding pleiomorphic targets for drugs allows new indications or warnings for treatment to be identified. As test of concept, we applied a new chemical genomics approach to uncover additional targets for the widely prescribed lipid-lowering pro-drug simvastatin. We used mRNA extracted from internal mammary artery from patients undergoing coronary artery surgery to prepare a viral cardiovascular protein library, using T7 bacteriophage. We then studied interactions of clones of the bacteriophage, each expressing a different cardiovascular polypeptide, with surface-bound simvastatin in 96-well plates. To maximise likelihood of identifying meaningful interactions between simvastatin and vascular peptides, we used a validated photo-immobilisation method to apply a series of different chemical linkers to bind simvastatin so as to present multiple orientations of its constituent components to potential targets. Three rounds of biopanning identified consistent interaction with the clone expressing part of the gene GJC3, which maps to Homo sapiens chromosome 7, and codes for gap junction gamma-3 protein, also known as connexin 30.2/31.3 (mouse connexin Cx29). Further analysis indicated the binding site to be for the N-terminal domain putatively ‘regulating’ connexin hemichannel and gap junction pores. Using immunohistochemistry we found connexin 30.2/31.3 to be present in samples of artery similar to those used to prepare the bacteriophage library. Surface plasmon resonance revealed that a 25 amino acid synthetic peptide representing the discovered N-terminus did not interact with simvastatin lactone, but did bind to the hydrolysed HMG CoA inhibitor, simvastatin acid. This interaction was also seen for fluvastatin. The gap junction blockers carbenoxolone and flufenamic acid also interacted with the same peptide providing insight into potential site of binding. These findings raise key questions about the functional significance of GJC3 transcripts in the vasculature and other tissues, and this connexin’s role in therapeutic and adverse effects of statins in a range of disease states

    pH-dependent modulation of voltage gating in connexin45 homotypic and connexin45/connexin43 heterotypic gap junctions

    No full text
    Intracellular pH (pHi) can change during physiological and pathological conditions causing significant changes of electrical and metabolic cell–cell communication through gap junction (GJ) channels. In HeLa cells expressing wild-type connexin45 (Cx45) as well as Cx45 and Cx43 tagged with EGFP, we examined how pHi affects junctional conductance (gj) and gj dependence on transjunctional voltage (Vj). To characterize Vj gating, we fit the gj–Vj relation using a stochastic four-state model containing one Vj-sensitive gate in each apposed hemichannel (aHC); aHC open probability was a Boltzmann function of the fraction of Vj across it. Using the model, we estimated gating parameters characterizing sensitivity to Vj and number of functional channels. In homotypic Cx45 and heterotypic Cx45/Cx43-EGFP GJs, pHi changes from 7.2 to ~8.0 shifted gj–Vj dependence of Cx45 aHCs along the Vj axis resulting in increased probability of GJ channels being in the fully open state without change in the slope of gj dependence on Vj. In contrast, acidification shifted gj–Vj dependence in the opposite direction, reducing open probability; acidification also reduced the number of functional channels. Correlation between the number of channels in Cx45-EGFP GJs and maximal gj achieved under alkaline conditions showed that only ~4% of channels were functional. The acid dissociation constant (pKa) of gj–pHi dependence of Cx45/Cx45 GJs was ~7. The pKa of heterotypic Cx45/Cx43-EGFP GJs was lower, ~6.7, between the pKas of Cx45 and Cx43-EGFP (~6.5) homotypic GJs. In summary, pHi significantly modulates junctional conductance of Cx45 by affecting both Vj gating and number of functional channels

    The antiarrhythmic peptide rotigaptide (ZP123) increases gap junction intercellular communication in cardiac myocytes and HeLa cells expressing connexin 43

    No full text
    1. We investigated the effects of rotigaptide (ZP123), a stable hexapeptide with antiarrhythmic properties, on gap junction mediated intercellular communication in contracting rat neonatal cardiac myocytes, HL-1 cells derived from cardiac atrium and in HeLa cells transfected with cDNA encoding Cx43-GFP, Cx32-GFP, Cx26-GFP, wild-type Cx43 or wild-type Cx26. 2. Intercellular communication was monitored before and after treatment with rotigaptide following microinjection of small fluorescent dyes (MW<1 kDa). The communication-modifying effect of rotigaptide was confined to cells expressing Cx43 since the peptide had no effect on dye transfer in HeLa cells expressing Cx32-GFP, Cx26-GFP or wild-type Cx26. In contrast, HeLa cells expressing Cx43-GFP exposed to 50 nM rotigaptide for 5 h showed a 40% increase in gap junction mediated communication. 3. Rotigaptide (50 nM) increased intercellular dye transfer in myocytes and atrial HL-1 cells, where Cx43 is the dominant connexin. However, it caused no change in cell beating rates of cardiac myocytes. 4. Western blot analysis showed that rotigaptide did not modify the overall level of Cx43 expression and changes in the phosphorylation status of the protein were not observed. 5. We conclude that the effects of rotigaptide were confined to cells expressing Cx43
    corecore