65,669 research outputs found

    Expressive Stream Reasoning with Laser

    Full text link
    An increasing number of use cases require a timely extraction of non-trivial knowledge from semantically annotated data streams, especially on the Web and for the Internet of Things (IoT). Often, this extraction requires expressive reasoning, which is challenging to compute on large streams. We propose Laser, a new reasoner that supports a pragmatic, non-trivial fragment of the logic LARS which extends Answer Set Programming (ASP) for streams. At its core, Laser implements a novel evaluation procedure which annotates formulae to avoid the re-computation of duplicates at multiple time points. This procedure, combined with a judicious implementation of the LARS operators, is responsible for significantly better runtimes than the ones of other state-of-the-art systems like C-SPARQL and CQELS, or an implementation of LARS which runs on the ASP solver Clingo. This enables the application of expressive logic-based reasoning to large streams and opens the door to a wider range of stream reasoning use cases.Comment: 19 pages, 5 figures. Extended version of accepted paper at ISWC 201

    Answering Mermin's Challenge with Conservation per No Preferred Reference Frame

    Get PDF
    In 1981, Mermin published a now famous paper titled, "Bringing home the atomic world: Quantum mysteries for anybody" that Feynman called, "One of the most beautiful papers in physics that I know." Therein, he presented the "Mermin device" that illustrates the conundrum of quantum entanglement per the Bell spin states for the "general reader." He then challenged the "physicist reader" to explain the way the device works "in terms meaningful to a general reader struggling with the dilemma raised by the device." Herein, we show how "conservation per no preferred reference frame (NPRF)" answers that challenge. In short, the explicit conservation that obtains for Alice and Bob's Stern-Gerlach spin measurement outcomes in the same reference frame holds only on average in different reference frames, not on a trial-by-trial basis. This conservation is SO(3) invariant in the relevant symmetry plane in real space per the SU(2) invariance of its corresponding Bell spin state in Hilbert space. Since NPRF is also responsible for the postulates of special relativity, and therefore its counterintuitive aspects of time dilation and length contraction, we see that the symmetry group relating non-relativistic quantum mechanics and special relativity via their "mysteries" is the restricted Lorentz group.Comment: 18 pages, 9 figures. This version as revised and resubmitted to Scientific Report

    Documenting Antarctic Alteration of Eucrites

    Get PDF
    When meteorites were discovered in Antarctica, it was anticipated that terrestrial alteration would be at a minimum because of their deepfreeze storage where chemical reaction rates would be low. However, early compositional and petrologic studies established the presence of terrestrial alteration phases (e.g., [1, 2]). These were especially prevalent in chondrites because metal and troilite are most susceptible to terrestrial alteration [3]. Howardites, eucrites and diogenites (HEDs) are less prone to alteration because they have low abundances of metal and troilite. Nevertheless, investigations of HED meteorites document a wide array of mineralogical, compositional and isotopic effects of terrestrial alteration (e.g., [4-8]). Studies of the mineralogical effects of alteration [4] were done with old scanning electron microscope (SEM) technology which could only image small regions at a time. The micro-context of alteration phases was revealed, but larger-scale context was difficult to establish. Here we demonstrate the utility of wholethin-section X-ray mapping of eucrites by modern SEMs to document large-scale distributions of alteration materials which serve to evaluate sample freshness, highlight regions for detail study, and facilitate testing a hypothesis for alteration of eucrites [8

    Foot-operated cell-counter

    Get PDF
    Cell-counter for cell indices consists of a footboard with four pressure sensitive switches and an enclosure for the components and circuitry. This device increases the operators efficiency by reducing the number of required hand movements

    Analysis of effects of macroscopic propagation and multiple molecular orbitals on the minimum in high-order harmonic generation of aligned CO2_{2}

    Get PDF
    We report theoretical calculations on the effect of the multiple orbital contribution in high-order harmonic generation (HHG) from aligned CO2_2 with inclusion of macroscopic propagation of harmonic fields in the medium. Our results show very good agreements with recent experiments for the dynamics of the minimum in HHG spectra as laser intensity or alignment angle changes. Calculations are carried out to check how the position of the minimum in HHG spectra depends on the degrees of molecular alignment, laser focusing conditions, and the effects of alignment-dependent ionization rates of the different molecular orbitals. These analyses help to explain why the minima observed in different experiments may vary.Comment: 7 figure

    Facet recovery and light emission from GaN/InGaN/GaN core-shell structures grown by metal organic vapour phase epitaxy on etched GaN nanorod arrays

    Get PDF
    The use of etched nanorods from a planar template as a growth scaffold for a highly regular GaN/InGaN/GaN core-shell structure is demonstrated. The recovery of m-plane non-polar facets from etched high-aspect-ratio GaN nanorods is studied with and without the introduction of a hydrogen silsesquioxane passivation layer at the bottom of the etched nanorod arrays. This layer successfully prevented c-plane growth between the nanorods, resulting in vertical nanorod sidewalls (∼89.8°) and a more regular height distribution than re-growth on unpassivated nanorods. The height variation on passivated nanorods is solely determined by the uniformity of nanorod diameter, which degrades with increased growth duration. Facet-dependent indium incorporation of GaN/InGaN/GaN core-shell layers regrown onto the etched nanorods is observed by high-resolution cathodoluminescence imaging. Sharp features corresponding to diffracted wave-guide modes in angle-resolved photoluminescence measurements are evidence of the uniformity of the full core-shell structure grown on ordered etched nanorods

    Diffusion Enhances Chirality Selection

    Full text link
    Diffusion effect on chirality selection in a two-dimensional reaction-diffusion model is studied by the Monte Carlo simulation. The model consists of achiral reactants A which turn into either of the chiral products, R or S, in a solvent of chemically inactive vacancies V. The reaction contains the nonlinear autocatalysis as well as recycling process, and the chiral symmetry breaking is monitored by an enantiomeric excess ϕ\phi. Without dilution a strong nonlinear autocatalysis ensures chiral symmetry breaking. By dilution, the chiral order ϕ\phi decreases, and the racemic state is recovered below the critical concentration ccc_c. Diffusion effectively enhances the concentration of chiral species, and ccc_c decreases as the diffusion coefficient DD increases. The relation between ϕ\phi and cc for a system with a finite DD fits rather well to an interpolation formula between the diffusionless(D=0) and homogeneous (D=∞D=\infty) limits.Comment: 7 pages, 6 figure

    Evolution of the gaps through the cuprate phase-diagram

    Full text link
    The actual physical origin of the gap at the antinodes, and a clear identification of the superconducting gap are fundamental open issues in the physics of high-TcT_c superconductors. Here, we present a systematic electronic Raman scattering study of a mercury-based single layer cuprate, as a function of both doping level and temperature. On the deeply overdoped side, we show that the antinodal gap is a true superconducting gap. In contrast, on the underdoped side, our results reveal the existence of a break point close to optimal doping below which the antinodal gap is gradually disconnected from superconductivity. The nature of both the superconducting and normal state is distinctly different on each side of this breakpoint

    Theory of high-order harmonic generation from molecules by intense laser pulses

    Full text link
    We show that high-order harmonics generated from molecules by intense laser pulses can be expressed as the product of a returning electron wave packet and the photo-recombination cross section (PRCS) where the electron wave packet can be obtained from simple strong-field approximation (SFA) or from a companion atomic target. Using these wave packets but replacing the PRCS obtained from SFA or from the atomic target by the accurate PRCS from molecules, the resulting HHG spectra are shown to agree well with the benchmark results from direct numerical solution of the time-dependent Schr\"odinger equation, for the case of H2+_2^+ in laser fields. The result illustrates that these powerful theoretical tools can be used for obtaining high-order harmonic spectra from molecules. More importantly, the results imply that the PRCS extracted from laser-induced HHG spectra can be used for time-resolved dynamic chemical imaging of transient molecules with temporal resolutions down to a few femtoseconds.Comment: 10 pages, 5 figure
    • …
    corecore