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Introduction:  Most asteroidal igneous rocks are 

eucrite-like basalts and gabbros, composed mostly of 
ferroan low- and high-Ca pyroxenes and calcic plagio-
clase, plus smaller amounts of silica (most commonly 
tridymite), ilmenite, chromite, troilite, Ca-phosphate, 
metal and sometimes ferroan olivine. Eucrite-like 
mafic rocks are fragments of the crusts of differentiat-
ed asteroids, and most are likely from 4 Vesta [1]. 

Oxygen isotopic compositions of meteorites are 
important indicators of genetic relationships [2]. Eu-
crite-like basalt Northwest Africa (NWA) 011 is 
anomalous in O isotopic composition compared to 
other eucrites and is thought to be from different aster-
oid [3]. Current analytical methods allow smaller O 
isotopic differences to be resolved [4, 5]; for example, 
Ibitira differs from the eucritic 17O mean by 0.171 ‰, 
20 times the uncertainty of the mean (Fig. 1). Some 
eucrite-like mafic rocks have even smaller O-isotopic 
anomalies (Fig. 1). Here, “normal” eucrites are indis-
tinguishable from the group mean O isotopic composi-
tion; “anomalous” eucrites are distinguishable. 
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Figure 1. O-isotopic compositions of eucrite-like mafic 
meteorites; Open University data from [5-10]. 

The FeO/MnO ratios of planetary basalts can be 
used to fingerprint the source body. This ratio is rela-
tively invariant during most igneous processes and is 
inherited from its source region with little modification 
[11]. Low-Ca pyroxenes in Ibitira and NWA 011 have 
FeO/MnO ratios that are resolvable from those of most 
eucritic-like basalts, supporting formation on different 
asteroids [3, 12]. The efficacy of the FeO/MnO ratio as 
a diagnostic of source body was demonstrated through 
comparison of basalts from the Earth, Moon, Mars, 
Vesta and the angrite parent asteroid, where large dif-
ferences in pyroxene and/or olivine FeO/MnO are pre-

sent [11]. Modifications imposed by igneous processes 
are small secondary effects in this comparison. 

Our analytical protocol allows precision of better 
than 2% (1σ standard deviation) on FeO/MnO to be 
achieved for homogeneous eucritic pyroxenes [12]. 
Our data have resolvable differences in pyroxene 
FeO/MnO for some anomalous eucrite-like mafic 
rocks, but not all [8, 10, 13]. For example, Emmaville 
differs from the eucritic 17O mean by 0.087 ‰, 
roughly 10 times the uncertainty of the mean (Fig. 1), 
but its pyroxene FeO/MnO is indistinguishable from 
those of normal eucrites [8]. Further, some normal, 
eucrite-like mafic rocks have distinct pyroxene 
FeO/MnO ratios, whilst others show internal variations 
in FeO/MnO [14]. Here we begin to address the utility 
and limitations of using FeO/MnO ratios as source-
body vs. formational process indicators when differ-
ences in this ratio are small. 

FeO/MnO:  Divalent Fe and Mn are homologous 
species; their identical charge and similar ionic radius 
(78 vs. 83 pm; octahedral coordination) allow them to 
substitute for each other in mineral structures with 
similar levels of distortion to the crystal structure. 
They have similar mineral/melt partition coefficients 
for ferromagnesian silicates [15]. For the degrees of 
fractionation  typical of basaltic suites, little change to 
magma FeO/MnO is incurred. Eucrite-like basalts 
were formed at an oxygen fugacity near the iron-
wüstite buffer, and had variable, but poorly document-
ed, S contents [1, 15]. Small differences in fO2 or fS2 
could lead to resolvable differences in pyroxene 
FeO/MnO as Fe, but not Mn, is partitioned between 
the silicate, metal and sulfide phases. Redox and sili-
cate-sulfide interactions leave clear petrological signa-
tures that allow us to distinguish secondary, parent-
body processes, from primary differences due to prov-
enance. Two examples: high-S magmas result in loss 
of FeO to FeS coupled with systematically decreasing 
pyroxene FeO/MnO with crystallization (normal eu-
crite Queen Alexandra Range (QUE) 94484 [16]); 
subsolidus redox results in pyroxenes with very low 
FeO/MnO (18.9 ± 0.4) and high modal abundances of 
Fe metal and silica (normal eucrite Elephant Moraine 
(EET) 87542 [14]). 

Eucritic Pyroxenes:  Eucrite-like basalts crystal-
lized pigeonite on their liquidi, which evolved to au-
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gite with fractionation [15]. The majority of a eucrites’ 
Fe and Mn are in pyroxene. Comparison of pyroxene 
FeO/MnO can, therefore, be a robust proxy for bulk-
rock FeO/MnO. The large Ca2+ cation only occupies 
the pyroxene M2 site, whilst Fe2+ and Mn2+ preferen-
tially fill the M2 site, with the filling order of the latter 
being Mn2+ > Fe2+. The slightly smaller radius of Fe2+ 
indicates that the filling order for the M1 site is Fe2+ > 
Mn2+ [17]. Thus, Fe2+ and Mn2+ partition differently in 
low-Ca and high-Ca pyroxenes. Most eucrite-like 
mafic rocks underwent variable degrees of thermal 
metamorphism engendering exsolution of high-Ca 
pyroxene from pigeonite, resulting in augite or diop-
side lamellae in a low-Ca pyroxene host for the most 
metamorphosed rocks [18]. This can lead to fractiona-
tion of FeO/MnO between the phases (e.g., Asuka (A-) 
881394, Fig. 2). We compare only low-Ca pyroxene 
compositions in order to minimize problems associated 
with FeO/MnO partitioning between pyroxene types. 
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Figure 2. FeO/MnO vs. Wo for pyroxene analyses of 
cumulate gabbro A-881394, and basalts Grosvenor 
Mountains (GRO) 06059, Ibitira and Pecora Escarp-
ment (PCA) 91007. 

Fe/Mn = 31.8

Fe/Mn = 34.9

200 µm

Fe/Mn x‐ray map

low high
Fe/Mn X‐ray intensity ratio

 
Figure 3. Variation in FeO/MnO within a single grain 
fragment in GRO 06059. 

Resolvable differences in low-Ca pyroxene 
FeO/MnO can occur within a given eucrite-like mafic 
rock. We have found that the majority of low-Ca py-
roxene grains in the normal basaltic eucrite GRO 
06059 have FeO/MnO of 31.5 ± 0.3, within the range 
of normal eucrites, whilst a subset of analyses has 
FeO/MnO of 34.9 ± 0.4, in between those of anoma-
lous basalts PCA 91007 (33.3 ± 0.5) and Ibitira (36.3 ± 

0.4) (Fig. 2) [10, 12]. The different pyroxene 
FeO/MnO ratios can be found within individual grain 
fragments. Elemental mapping shows that the differ-
ences are caused by irregular zoning patches in the 
pyroxenes (Fig. 3). These high FeO/MnO zones are 
more magnesian (mg# 39.0 ± 0.3 vs. 37.6 ± 0.4), less 
calcic (Fig. 2), have higher Al (0.0118 ± 0.0016 vs. 
0.0089 ± 0.0015 apfu), lower Mn (0.0336 ± 0.0003 vs. 
0.0371 ± 0.0007 apfu), but are indistinguishable in Fe. 

Discussion:  We have identified several cases 
where variations in pyroxene FeO/MnO within normal 
eucrites is equivalent to, or larger than, the difference 
between normal and anomalous eucrites such as PCA 
91007 (Fig. 2) [10]. In all such cases, detailed petro-
logical study allows us to identify the cause and assess 
the likelihood that a given eucrite-like mafic rock is 
distinct from normal eucrites in FeO/MnO. Neverthe-
less, there are issues that require consideration. For 
example, high-Ca pyroxene lamellae in A-881394 
have much lower FeO/MnO than the low-Ca pyroxene 
hosts (Fig. 2). The primary pyroxene would have had 
an FeO/MnO intermediate between these, making firm 
conclusions regarding provenance from comparisons 
with eucrite-like rocks that are less metamorphosed 
somewhat uncertain. 

Key Point:  Precise, low-Ca pyroxene FeO/MnO 
ratios can be used to distinguish eucrite-like mafic 
rocks from different source asteroids even when varia-
tions in this ratio are small as long as petrologic obser-
vations are used to understand any variations caused 
by parent asteroid processes. 
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