34,294 research outputs found

    Shrinking Point Bifurcations of Resonance Tongues for Piecewise-Smooth, Continuous Maps

    Full text link
    Resonance tongues are mode-locking regions of parameter space in which stable periodic solutions occur; they commonly occur, for example, near Neimark-Sacker bifurcations. For piecewise-smooth, continuous maps these tongues typically have a distinctive lens-chain (or sausage) shape in two-parameter bifurcation diagrams. We give a symbolic description of a class of "rotational" periodic solutions that display lens-chain structures for a general NN-dimensional map. We then unfold the codimension-two, shrinking point bifurcation, where the tongues have zero width. A number of codimension-one bifurcation curves emanate from shrinking points and we determine those that form tongue boundaries.Comment: 27 pages, 6 figure

    Higgs particle detection using jets

    Full text link
    We study the possibility of detecting the Higgs boson in the intermediate mass range via its two jet channel. We consider only Higgs bosons produced in association with a ttˉt \bar{t} pair. Both tt and tˉ\bar{t} are required to decay semileptonically to reduce the QCD background. The signal is compared with the main background, ttˉ+2t \bar{t} + 2 jets, after appropriate cuts. A sizable signal above background is seen in our simulation at the parton level. Use of the ttˉZt\bar{t}Z channel with Z Z decaying to l+l−l^+ l^- is suggested for eliminating theoretical uncertainties in determining the ttˉHt \bar{t}H signal.Comment: 10 pages, Fig.1 a,b,c,d(surve on request), plain tex, PVAM-HEP-93-

    Exploring complex networks via topological embedding on surfaces

    Full text link
    We demonstrate that graphs embedded on surfaces are a powerful and practical tool to generate, characterize and simulate networks with a broad range of properties. Remarkably, the study of topologically embedded graphs is non-restrictive because any network can be embedded on a surface with sufficiently high genus. The local properties of the network are affected by the surface genus which, for example, produces significant changes in the degree distribution and in the clustering coefficient. The global properties of the graph are also strongly affected by the surface genus which is constraining the degree of interwoveness, changing the scaling properties from large-world-kind (small genus) to small- and ultra-small-world-kind (large genus). Two elementary moves allow the exploration of all networks embeddable on a given surface and naturally introduce a tool to develop a statistical mechanics description. Within such a framework, we study the properties of topologically-embedded graphs at high and low `temperatures' observing the formation of increasingly regular structures by cooling the system. We show that the cooling dynamics is strongly affected by the surface genus with the manifestation of a glassy-like freezing transitions occurring when the amount of topological disorder is low.Comment: 18 pages, 7 figure

    Shot Noise in Nanoscale Conductors From First Principles

    Full text link
    We describe a field-theoretic approach to calculate quantum shot noise in nanoscale conductors from first principles. Our starting point is the second-quantization field operator to calculate shot noise in terms of single quasi-particle wavefunctions obtained self-consistently within density functional theory. The approach is valid in both linear and nonlinear response and is particularly suitable in studying shot noise in atomic-scale conductors. As an example we study shot noise in Si atomic wires between metal electrodes. We find that shot noise is strongly nonlinear as a function of bias and it is enhanced for one- and two-Si wires due to the large contribution from the metal electrodes. For longer wires it shows an oscillatory behavior for even and odd number of atoms with opposite trend with respect to the conductance, indicating that current fluctuations persist with increasing wire length.Comment: 4 pages, 4 figure

    Interference Effects, Time Reversal Violation and Search for New Physics in Hadronic Weak Decays

    Get PDF
    We propose some methods for studying hadronic sequential two-body decays involving more spinning particles. It relies on the analysis of T-odd and T-even asymmetries, which are related to interference terms. The latter asymmetries turn out to be as useful as the former ones in inferring time reversal violating observables; these in turn may be sensitive, under some particular conditions, to possible contributions beyond the standard model. Our main result is that one can extract such observables even after integrating the differential decay width over almost all of the available angles. Moreover we find that the correlations based exclusively on momenta are quite general, since they provide as much information as those involving one or more spins. We generalize some methods already proposed in the literature for particular decay channels, but we also pick out a new kind of time reversal violating observables. Our analysis could be applied, for example, to data of LHCb experiment.Comment: 35 page

    A solution for estimating the tensile yield strength from small specimens

    Full text link
    The small punch test is an innovative test that utilises small disc-shaped specimens to assess the mechanical behaviour of materials. The main advantage is the relatively small specimen size. In this article, a modified analytical solution for the small punch maximum bend strength is proposed that is based on classical plate theory. A clear linear relationship is observed between the tensile yield strength σYS and the small punch maximum bend strength σy for both alloys and metal matrix composites. Copyright by ASTM Int'l (all rights reserved)

    Light diffraction by a strong standing electromagnetic wave

    Full text link
    The nonlinear quantum interaction of a linearly polarized x-ray probe beam with a focused intense standing laser wave is studied theoretically. Because of the tight focusing of the standing laser pulse, diffraction effects arise for the probe beam as opposed to the corresponding plane wave scenario. A quantitative estimate for realistic experimental conditions of the ellipticity and the rotation of the main polarization plane acquired by the x-ray probe after the interaction shows that the implementation of such vacuum effects is feasible with future X-ray Free Electron Laser light.Comment: 5 pages, 2 figures. Published versio

    Phase-change chalcogenide glass metamaterial

    Full text link
    Combining metamaterials with functional media brings a new dimension to their performance. Here we demonstrate substantial resonance frequency tuning in a photonic metamaterial hybridized with an electrically/optically switchable chalcogenide glass. The transition between amorphous and crystalline forms brings about a 10% shift in the near-infrared resonance wavelength of an asymmetric split-ring array, providing transmission modulation functionality with a contrast ratio of 4:1 in a device of sub-wavelength thickness.Comment: 3 pages, 3 figure

    Ultra-high brilliance multi-MeV Îł\gamma-ray beam from non-linear Thomson scattering

    Full text link
    We report on the generation of a narrow divergence (ξ≈2.5\theta\approx 2.5 mrad), multi-MeV (EMAX=18E_\text{MAX} = 18 MeV) and ultra-high brilliance (≈2×1019\approx 2\times10^{19} photons s−1^{-1} mm−2^{-2} mrad −2^{-2} 0.1\% BW) γ\gamma-ray beam from the scattering of an ultra-relativistic laser-wakefield accelerated electron beam in the field of a relativistically intense laser (dimensionless amplitude a0≈2a_0\approx2). The spectrum of the generated γ\gamma-ray beam is measured, with MeV resolution, seamlessly from 6 MeV to 18 MeV, giving clear evidence of the onset of non-linear Thomson scattering. The photon source has the highest brilliance in the multi-MeV regime ever reported in the literature
    • 

    corecore