82 research outputs found

    Verification and Control of Turn-Based Probabilistic Real-Time Games

    Get PDF
    Quantitative verification techniques have been developed for the formal analysis of a variety of probabilistic models, such as Markov chains, Markov decision process and their variants. They can be used to produce guarantees on quantitative aspects of system behaviour, for example safety, reliability and performance, or to help synthesise controllers that ensure such guarantees are met. We propose the model of turn-based probabilistic timed multi-player games, which incorporates probabilistic choice, real-time clocks and nondeterministic behaviour across multiple players. Building on the digital clocks approach for the simpler model of probabilistic timed automata, we show how to compute the key measures that underlie quantitative verification, namely the probability and expected cumulative price to reach a target. We illustrate this on case studies from computer security and task scheduling

    Reactivity of Biarylazacyclooctynones in Copper-Free Click Chemistry

    Get PDF
    The 1,3-dipolar cycloaddition of cyclooctynes with azides, also called "copper-free click chemistry", is a bioorthogonal reaction with widespread applications in biological discovery. The kinetics of this reaction are of paramount importance for studies of dynamic processes, particularly in living subjects. Here we performed a systematic analysis of the effects of strain and electronics on the reactivity of cyclooctynes with azides through both experimental measurements and computational studies using a density functional theory (DFT) distortion/interaction transition state model. In particular, we focused on biarylazacyclooctynone (BARAC) because it reacts with azides faster than any other reported cyclooctyne and its modular synthesis facilitated rapid access to analogues. We found that substituents on BARAC's aryl rings can alter the calculated transition state interaction energy of the cycloaddition through electronic effects or the calculated distortion energy through steric effects. Experimental data confirmed that electronic perturbation of BARAC's aryl rings has a modest effect on reaction rate, whereas steric hindrance in the transition state can significantly retard the reaction. Drawing on these results, we analyzed the relationship between alkyne bond angles, which we determined using X-ray crystallography, and reactivity, quantified by experimental second-order rate constants, for a range of cyclooctynes. Our results suggest a correlation between decreased alkyne bond angle and increased cyclooctyne reactivity. Finally, we obtained structural and computational data that revealed the relationship between the conformation of BARAC's central lactam and compound reactivity. Collectively, these results indicate that the distortion/interaction model combined with bond angle analysis will enable predictions of cyclooctyne reactivity and the rational design of new reagents for copper-free click chemistry

    Analysing RoboChart with probabilities

    Get PDF
    Robotic systems have applications in many real-life scenarios, ranging from household cleaning to critical operations. RoboChart is a graphical language for describing robotic controllers designed specifically for autonomous and mobile robots, providing architectural constructs to identify the requirements for a robotic platform. It also provides a formal semantics in CSP. RoboChart has a probabilistic operator (P) but no associated probabilistic CSP semantics. When (P) is used, currently a non-deterministic choice (Π) is used as semantics; this is a conservative semantics but it does not allow the analysis of stochastic properties. In this paper we define the semantics of the operator in terms of the probabilistic CSP operator ⊞. We also show how this augmented CSP semantics for RoboChart can be translated into the PRISM probabilistic language to be able to check stochastic properties

    Flexibility in Process-Aware Information Systems

    Get PDF
    Abstract. Process-aware information systems (PAIS) must be able to deal with uncertainty, exceptional situations, and environmental changes. Needed business agility is often hindered by the lacking flexibility of existing PAIS. Once a process is implemented, its logic cannot be adapted or refined anymore. This often leads to rigid behavior or gaps between real-world processes and implemented ones. In response to this drawback, adaptive PAIS have emerged, which allow to dynamically adapt or evolve the structure of process models under execution. This paper deals with fundamental challenges related to structural process changes, discusses how existing approaches deal with them, and shows how the various problems have been exterminated in ADEPT2 change framework. We also survey existing approaches fostering flexible process support.

    Lessons from a one-year hospital-based surveillance of acute respiratory infections in Berlin- comparing case definitions to monitor influenza

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surveillance of severe acute respiratory infections (SARI) in sentinel hospitals is recommended to estimate the burden of severe influenza-cases. Therefore, we monitored patients admitted with respiratory infections (RI) in 9 Berlin hospitals from 7.12.2009 to 12.12.2010 according to different case definitions (CD) and determined the proportion of cases with influenza A(H1N1)pdm09 (pH1N1). We compared the sensitivity and specificity of CD for capturing pandemic pH1N1 cases.</p> <p>Methods</p> <p>We established an RI-surveillance restricted to adults aged ≤ 65 years within the framework of a pH1N1 vaccine effectiveness study, which required active identification of RI-cases. The hospital information-system was screened daily for newly admitted RI-patients. Nasopharyngeal swabs from consenting patients were tested by PCR for influenza-virus subtypes. Four clinical CD were compared in terms of capturing pH1N1-positives among hospitalized RI-patients by applying sensitivity and specificity analyses. The broadest case definition (CD1) was used for inclusion of RI-cases; the narrowest case definition (CD4) was identical to the SARI case definition recommended by ECDC/WHO.</p> <p>Results</p> <p>Over the study period, we identified 1,025 RI-cases, of which 283 (28%) met the ECDC/WHO SARI case definition. The percentage of SARI-cases among internal medicine admissions decreased from 3.2% (calendar-week 50-2009) to 0.2% (week 25-2010). Of 354 patients tested by PCR, 20 (6%) were pH1N1-positive. Two case definitions narrower than CD1 but -in contrast to SARI- not requiring shortness of breath yielded the largest areas under the Receiver-Operator-Curve. Heterogeneity of proportions of patients admitted with RI between hospitals was significant.</p> <p>Conclusions</p> <p>Comprehensive surveillance of RI cases was feasible in a network of community hospitals. In most settings, several hospitals should be included to ensure representativeness. Although misclassification resulting from failure to obtain symptoms in the hospital information-system cannot be ruled out, a high proportion of hospitalized PCR-positive pH1N1-patients (45%) did not fulfil the SARI case-definition that included shortness of breath or difficulty breathing. Thus, to assess influenza-related disease burden in hospitals, broader, alternative case definitions should be considered.</p

    Altersspezifischer Einsatz antiviraler Arzneimittel während der Pandemie 2009

    No full text

    Constructs competition miner:process control-flow discovery of BP-domain constructs

    No full text
    Process Discovery techniques help a business analyst to understand the actual processes deployed in an organization, i.e. based on a log of events, the actual activity workflow is discovered. In most cases their results conform to general purpose representations like Petri nets or Causal nets which are preferred by academic scholars but difficult to comprehend for business analysts. In this paper we propose an algorithm that follows a top-down approach to directly mine a process model which consists of common BP-domain constructs and represents the main behaviour of the process. The algorithm is designed so it can deal with noise and not-supported behaviour. This is achieved by letting the different supported constructs compete with each other for the most suitable solution from top to bottom using ”soft” constraints and behaviour approximations. The key parts of the algorithm are formally described and evaluation results are presented and discussed

    Calculating the Semantic Conformance of Processes

    No full text

    Non-Controllable Choice Robustness - Expressing the Controllability of Workflow Processes

    No full text
    Workflow systems are reactive systems. They run in parallel with their environment. They respond to external events and produce events which again have certain effects in the environment. Most approaches in modeling workflow systems assume reasonable behavior of the environment. They disregard malicious requests such as e.g. denial-of-service attacks or hacker attacks trying to misuse the provided services
    corecore