88 research outputs found
Balance responses to lateral perturbations in human treadmill walking
During walking on a treadmill 10 human subjects (mean age 20 years) were perturbed by 100 ms pushes or pulls to the left or the right, of various magnitudes and in various phases of the gait cycle. Balance was maintained by (1) a stepping strategy (synergy), in which the foot at the next step is positioned a fixed distance outward of the 'extrapolated centre of mass', and (2) a lateral ankle strategy, which comprises a medial or lateral movement of the centre of pressure under the foot sole. The extrapolated centre of mass is defined as the centre of mass position plus the centre of mass velocity multiplied by a parameter related to the subject's leg length. The ankle strategy is the fastest, with a mechanical delay of about 200 ms (20% of a stride), but it can displace the centre of pressure no more than 2 cm. The stepping strategy needs at least 300 ms (30% of a stride) before foot placement, but has a range of 20 cm. When reaction time is sufficient, the magnitude of the total response is in good agreement with our hypothesis: mean centre of pressure (foot) position is a constant distance outward of the extrapolated centre of mass. If the reaction time falls short, a further correction is applied in the next step. In the healthy subjects studied here, no further corrections were necessary, so balance was recovered within two steps (one stride)
Sweet Sorghum for Biofuel Industry
Renewable sources of energy can help mitigate the negative effects associated with the use of fossil fuels and represent a growing share of the energy portfolio. Biofuels are the only source of liquid transportation fuel that is both renewable and compatible with the existing fleet of vehicles. Sweet sorghum as a biofuel crop has many attractive features that make it an excellent source of renewable energy. The diversion of crop land for cultivation of sweet sorghum does not arise with as it meets food, fuel, and fodder requirement. Sweet sorghum–based ethanol-producing distilleries have been established in China, India, and elsewhere. Besides ethanol, acetone, butanol, lactic acid, butyric acid, hydrogen, and methane are other fermentation products that can be produced. Sweet sorghum also produces several potential native products such as cellulose for paper production, waxes, proteins, and allelopathic compounds such as sorgoleone. In general, complementation of sweet sorghum with sugarcane is possible in those areas of the world where sugarcane is produced, as sweet sorghum is compatible with the infrastructure and the managerial expertise available in the sugarcane industry
Recommended from our members
A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: implications for the genetics of sugar metabolism.
BackgroundThe process of crop domestication often consists of two stages: initial domestication, where the wild species is first cultivated by humans, followed by diversification, when the domesticated species are subsequently adapted to more environments and specialized uses. Selective pressure to increase sugar accumulation in certain varieties of the cereal crop Sorghum bicolor is an excellent example of the latter; this has resulted in pronounced phenotypic divergence between sweet and grain-type sorghums, but the genetic mechanisms underlying these differences remain poorly understood.ResultsHere we present a new reference genome based on an archetypal sweet sorghum line and compare it to the current grain sorghum reference, revealing a high rate of nonsynonymous and potential loss of function mutations, but few changes in gene content or overall genome structure. We also use comparative transcriptomics to highlight changes in gene expression correlated with high stalk sugar content and show that changes in the activity and possibly localization of transporters, along with the timing of sugar metabolism play a critical role in the sweet phenotype.ConclusionsThe high level of genomic similarity between sweet and grain sorghum reflects their historical relatedness, rather than their current phenotypic differences, but we find key changes in signaling molecules and transcriptional regulators that represent new candidates for understanding and improving sugar metabolism in this important crop
Polyphenols: A concise overview on the chemistry, occurrence, and human health
This review gives an updated picture of each class of phenolic compounds and their properties. The most common classification implies the subdivision of phenolics in two main groups: flavonoids (e.g., anthocyanins, flavanols, flavanones, flavonols, flavonones, and isoflavones) and non-flavonoids (e.g., phenolic acids, xanthones, stilbens, lignans, and tannins) polyphenols. The great interest in polyphenols is associated with their high potential application for food preservation and for therapeutic beneficial use. The relationship between polyphenol intake and human health has been exploited with special reference to cardiovascular diseases, hypertension, diabetes, metabolic syndrome, obesity, and cancer. The use of current existing databases of bioactive compounds including polyphenols is described as key tools for human health research.info:eu-repo/semantics/publishedVersio
Downregulation of Cinnamyl-Alcohol Dehydrogenase in Switchgrass by RNA Silencing Results in Enhanced Glucose Release after Cellulase Treatment
Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in monolignol biosynthesis and genetic evidence indicates CAD deficiency in grasses both decreases overall lignin, alters lignin structure and increases enzymatic recovery of sugars. To ascertain the effect of CAD downregulation in switchgrass, RNA mediated silencing of CAD was induced through Agrobacterium mediated transformation of cv. “Alamo” with an inverted repeat construct containing a fragment derived from the coding sequence of PviCAD2. The resulting primary transformants accumulated less CAD RNA transcript and protein than control transformants and were demonstrated to be stably transformed with between 1 and 5 copies of the T-DNA. CAD activity against coniferaldehyde, and sinapaldehyde in stems of silenced lines was significantly reduced as was overall lignin and cutin. Glucose release from ground samples pretreated with ammonium hydroxide and digested with cellulases was greater than in control transformants. When stained with the lignin and cutin specific stain phloroglucinol-HCl the staining intensity of one line indicated greater incorporation of hydroxycinnamyl aldehydes in the lignin
Genetic Structure, Linkage Disequilibrium and Signature of Selection in Sorghum: Lessons from Physically Anchored DArT Markers
Population structure, extent of linkage disequilibrium (LD) as well as signatures of selection were investigated in sorghum using a core sample representative of worldwide diversity. A total of 177 accessions were genotyped with 1122 informative physically anchored DArT markers. The properties of DArTs to describe sorghum genetic structure were compared to those of SSRs and of previously published RFLP markers. Model-based (STRUCTURE software) and Neighbor-Joining diversity analyses led to the identification of 6 groups and confirmed previous evolutionary hypotheses. Results were globally consistent between the different marker systems. However, DArTs appeared more robust in terms of data resolution and bayesian group assignment. Whole genome linkage disequilibrium as measured by mean r2 decreased from 0.18 (between 0 to 10 kb) to 0.03 (between 100 kb to 1 Mb), stabilizing at 0.03 after 1 Mb. Effects on LD estimations of sample size and genetic structure were tested using i. random sampling, ii. the Maximum Length SubTree algorithm (MLST), and iii. structure groups. Optimizing population composition by the MLST reduced the biases in small samples and seemed to be an efficient way of selecting samples to make the best use of LD as a genome mapping approach in structured populations. These results also suggested that more than 100,000 markers may be required to perform genome-wide association studies in collections covering worldwide sorghum diversity. Analysis of DArT markers differentiation between the identified genetic groups pointed out outlier loci potentially linked to genes controlling traits of interest, including disease resistance genes for which evidence of selection had already been reported. In addition, evidence of selection near a homologous locus of FAR1 concurred with sorghum phenotypic diversity for sensitivity to photoperiod
- …