317 research outputs found

    Branding the nation: Towards a better understanding

    Get PDF
    This paper aims to clarify some misunderstanding about nation branding. It examines the origins and interpretations of the concept, and draws a comparison between nation branding and commercial branding. A new definition is offered that emphasises the need to shift from “branding” the nation to nation image management

    The metabolic regimes of 356 rivers in the United States

    Get PDF
    A national-scale quantification of metabolic energy flow in streams and rivers can improve understanding of the temporal dynamics of in-stream activity, links between energy cycling and ecosystem services, and the effects of human activities on aquatic metabolism. The two dominant terms in aquatic metabolism, gross primary production (GPP) and aerobic respiration (ER), have recently become practical to estimate for many sites due to improved modeling approaches and the availability of requisite model inputs in public datasets. We assembled inputs from the U.S. Geological Survey and National Aeronautics and Space Administration for October 2007 to January 2017. We then ran models to estimate daily GPP, ER, and the gas exchange rate coefficient for 356 streams and rivers across the continental United States. We also gathered potential explanatory variables and spatial information for cross-referencing this dataset with other datasets of watershed characteristics. This dataset offers a first national assessment of many-day time series of metabolic rates for up to 9 years per site, with a total of 490,907 site-days of estimates.We thank Jill Baron and the USGS Powell Center for financial support for this collaborative effort (Powell Center Working Group title: "Continental-scale overview of stream primary productivity, its links to water quality, and consequences for aquatic carbon biogeochemistry"). Additional financial support came from the USGS NAWQA program and Office of Water Information. NSF grants DEB-1146283 and EF1442501 partially supported ROH. A post-doctoral grant from the Basque Government partially supported MA. NAG was supported by the U.S. Department of Energy's Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. Leah Colasuonno provided expert logistical support of our working group meetings. The developers of USGS ScienceBase were very helpful both in hosting this dataset and in responding to our requests. Randy Hunt and Mike Fienen of the USGS Wisconsin Modeling Center graciously provided access to their HTCondor cluster. Mike Vlah provided detailed and insightful reviews of the data and metadata

    A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments

    Get PDF
    The volatile compound dimethylsulphide (DMS) is important in climate regulation, the sulphur cycle and signalling to higher organisms. Microbial catabolism of the marine osmolyte dimethylsulphoniopropionate (DMSP) is thought to be the major biological process generating DMS. Here we report the discovery and characterisation of the first gene for DMSP-independent DMS production in any bacterium. This gene, mddA, encodes a methyltransferase that methylates methanethiol (MeSH) and generates DMS. MddA functions in many taxonomically diverse bacteria including sediment-dwelling pseudomonads, nitrogen-fixing bradyrhizobia and cyanobacteria, and mycobacteria, including the pathogen Mycobacterium tuberculosis. The mddA gene is present in metagenomes from varied environments, being particularly abundant in soil environments, where it is predicted to occur in up to 76% of bacteria. This novel pathway may significantly contribute to global DMS emissions, especially in terrestrial environments, and could represent a shift from the notion that DMSP is the only significant precursor of DMS

    A grounded theory of female adolescents' dating experiences and factors influencing safety: the dynamics of the Circle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper describes the nature and characteristics of the dating relationships of adolescent females, including any of their experiences of abuse.</p> <p>Methods</p> <p>A grounded theory approach was used with 22 theoretically sampled female adolescents ages 15–18.</p> <p>Results</p> <p>Several important themes emerged: Seven stages of dating consistently described the relationships of female adolescents. A circle consisting of two interacting same sex peer groups provided structure for each teen as they navigated the dating course. The circle was the central factor affecting a female adolescent's potential for risk or harm in dating relationships. Teens defined abuse as an act where the intention is to hurt. Having once succumbed to sexual pressure, teens felt unable to refuse sex in subsequent situations.</p> <p>Conclusion</p> <p>An awareness of both the stages of dating and the dynamics of the circle will assist health care providers to plan and implement interventions in the female adolescent population. Study findings on factors and influences that support non-abusive versus abusive relationship might help identify female teens at risk and/or support interventions aimed at preventing dating violence.</p

    Therapeutic photography: enhancing patient communication.

    Get PDF
    Using photography with patients to help them express concerns, investigate coping strategies and learn from their peers is known as therapeutic photography. The practice has benefits to both professionals and participants, particularly with 'hard to reach' populations who may feel intimidated or disempowered. Neil Gibson explains how this intervention can be structured in the health setting

    Differential roles of push and pull factors on escape for travel: Personal and social identity perspectives

    Get PDF
    Š 2020 John Wiley & Sons Ltd This study examines the effects of push and pull motivations linked to an individual\u27s personal and social identities as key antecedents to escape for travel. In terms of push factors, escape for travel is driven from a personal identity perspective by the need for evaluation of self and regression and from a social identity perspective by the need for social interaction but not enhancement of kinship. Cultural motives that reflect personal identity positively influence escape for travel than destination pull factors linked to social identity. Overall, the study contributes to the existing knowledge on push and pull tourist motivations

    Fate of Allochthonous Dissolved Organic Carbon in Lakes: A Quantitative Approach

    Get PDF
    Inputs of dissolved organic carbon (DOC) to lakes derived from the surrounding landscape can be stored, mineralized or passed to downstream ecosystems. The balance among these OC fates depends on a suite of physical, chemical, and biological processes within the lake, as well as the degree of recalcintrance of the allochthonous DOC load. The relative importance of these processes has not been well quantified due to the complex nature of lakes, as well as challenges in scaling DOC degradation experiments under controlled conditions to the whole lake scale. We used a coupled hydrodynamic-water quality model to simulate broad ranges in lake area and DOC, two characteristics important to processing allochthonous carbon through their influences on lake temperature, mixing depth and hydrology. We calibrated the model to four lakes from the North Temperate Lakes Long Term Ecological Research site, and simulated an additional 12 ‘hypothetical’ lakes to fill the gradients in lake size and DOC concentration. For each lake, we tested several mineralization rates (range: 0.001 d−1 to 0.010 d−1) representative of the range found in the literature. We found that mineralization rates at the ecosystem scale were roughly half the values from laboratory experiments, due to relatively cool water temperatures and other lake-specific factors that influence water temperature and hydrologic residence time. Results from simulations indicated that the fate of allochthonous DOC was controlled primarily by the mineralization rate and the hydrologic residence time. Lakes with residence times <1 year exported approximately 60% of the DOC, whereas lakes with residence times >6 years mineralized approximately 60% of the DOC. DOC fate in lakes can be determined with a few relatively easily measured factors, such as lake morphometry, residence time, and temperature, assuming we know the recalcitrance of the DOC

    Methanethiol-dependent dimethylsulfide production in soil environments

    Get PDF
    Dimethylsulfide (DMS) is an environmentally important trace gas with roles in sulfur cycling, signalling to higher organisms and in atmospheric chemistry. DMS is believed to be predominantly produced in marine environments via microbial degradation of the osmolyte dimethylsulfoniopropionate (DMSP). However, significant amounts of DMS are also generated from terrestrial environments, for example, peat bogs can emit ~6 μmol DMS m−2 per day, likely via the methylation of methanethiol (MeSH). A methyltransferase enzyme termed ‘MddA’, which catalyses the methylation of MeSH, generating DMS, in a wide range of bacteria and some cyanobacteria, may mediate this process, as the mddA gene is abundant in terrestrial metagenomes. This is the first study investigating the functionality of MeSH-dependent DMS production (Mdd) in a wide range of aerobic environments. All soils and marine sediment samples tested produced DMS when incubated with MeSH. Cultivation-dependent and cultivation-independent methods were used to assess microbial community changes in response to MeSH addition in a grassland soil where 35.9% of the bacteria were predicted to contain mddA. Bacteria of the genus Methylotenera were enriched in the presence of MeSH. Furthermore, many novel Mdd+ bacterial strains were isolated. Despite the abundance of mddA in the grassland soil, the Mdd pathway may not be a significant source of DMS in this environment as MeSH addition was required to detect DMS at only very low conversion rates
    • …
    corecore