90 research outputs found

    An agent-based approach to assess drivers’ interaction with pre-trip information systems.

    Get PDF
    This article reports on the practical use of a multi-agent microsimulation framework to address the issue of assessing drivers’ responses to pretrip information systems. The population of drivers is represented as a community of autonomous agents, and travel demand results from the decision-making deliberation performed by each individual of the population as regards route and departure time. A simple simulation scenario was devised, where pretrip information was made available to users on an individual basis so that its effects at the aggregate level could be observed. The simulation results show that the overall performance of the system is very likely affected by exogenous information, and these results are ascribed to demand formation and network topology. The expressiveness offered by cognitive approaches based on predicate logics, such as the one used in this research, appears to be a promising approximation to fostering more complex behavior modelling, allowing us to represent many of the mental aspects involved in the deliberation process

    Relative property A and relative amenability for countable groups

    Full text link
    We define a relative property A for a countable group with respect to a finite family of subgroups. Many characterizations for relative property A are given. In particular a relative bounded cohomological characterization shows that if a group has property A relative to a family of subgroups, each of which has property A, then the group has property A. This result leads to new classes of groups that have property A. In particular, groups are of property A if they act cocompactly on locally finite property A spaces of bounded geometry with at least one stabilizer of property A. Specializing the definition of relative property A, an analogue definition of relative amenability for discrete groups are introduced and similar results are obtained.Comment: Updated to include a strengthening of the relative amenability characterizatio

    Evaluation of the efficacy and safety of intravenous remdesivir in adult patients with severe COVID-19: study protocol for a phase 3 randomized, double-blind, placebo-controlled, multicentre trial.

    Get PDF
    BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by a novel corinavirus (later named SARS-CoV-2 virus), was fistly reported in Wuhan, Hubei Province, China towards the end of 2019. Large-scale spread within China and internationally led the World Health Organization to declare a Public Health Emergency of International Concern on 30th January 2020. The clinical manifestations of COVID-19 virus infection include asymptomatic infection, mild upper respiratory symptoms, severe viral pneumonia with respiratory failure, and even death. There are no antivirals of proven clinical efficacy in coronavirus infections. Remdesivir (GS-5734), a nucleoside analogue, has inhibitory effects on animal and human highly pathogenic coronaviruses, including MERS-CoV and SARS-CoV, in in vitro and in vivo experiments. It is also inhibitory against the COVID-19 virus in vitro. The aim of this study is to assess the efficacy and safety of remdesivir in adult patients with severe COVID-19. METHODS: The protocol is prepared in accordance with the SPIRIT (Standard Protocol Items: Recommendations for Interventional Trials) guidelines. This is a phase 3, randomized, double-blind, placebo-controlled, multicentre trial. Adults (≥ 18 years) with laboratory-confirmed COVID-19 virus infection, severe pneumonia signs or symptoms, and radiologically confirmed severe pneumonia are randomly assigned in a 2:1 ratio to intravenously administered remdesivir or placebo for 10 days. The primary endpoint is time to clinical improvement (censored at day 28), defined as the time (in days) from randomization of study treatment (remdesivir or placebo) until a decline of two categories on a six-category ordinal scale of clinical status (1 = discharged; 6 = death) or live discharge from hospital. One interim analysis for efficacy and futility will be conducted once half of the total number of events required has been observed. DISCUSSION: This is the first randomized, placebo-controlled trial in COVID-19. Enrolment began in sites in Wuhan, Hubei Province, China on 6th February 2020. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04257656. Registered on 6 February 2020

    A new multi-anticipative car-following model with consideration of the desired following distance

    Get PDF
    We propose in this paper an extension of the multi-anticipative optimal velocity car-following model to consider explicitly the desired following distance. The model on the following vehicle’s acceleration is formulated as a linear function of the optimal velocity and the desired distance, with reaction-time delay in elements. The linear stability condition of the model is derived. The results demonstrate that the stability of traffic flow is improved by introducing the desired following distance, increasing the time gap in the desired following distance or decreasing the reaction-time delay. The simulation results show that by taking into account the desired following distance as well as the optimal velocity, the multi-anticipative model allows longer reaction-time delay in achieving stable traffic flows

    Trajectories from Snapshots: Integrated proteomic and metabolic single-cell assays reveal multiple independent adaptive responses to drug tolerance in a BRAF-mutant melanoma cell line

    Get PDF
    The determination of individual cell trajectories through a high-dimensional cell-state space is an outstanding challenge, with relevance towards understanding biological changes ranging from cellular differentiation to epigenetic (adaptive) responses of diseased cells to drugging. We report on a combined experimental and theoretic method for determining the trajectories that specific highly plastic BRAFV600E mutant patient-derived melanoma cancer cells take between drug-naive and drug-tolerant states. Recent studies have implicated non-genetic, fast-acting resistance mechanisms are activated in these cells following BRAF inhibition. While single-cell highly multiplex omics tools can yield snapshots of the cell state space landscape sampled at any given time point, individual cell trajectories must be inferred from a kinetic series of snapshots, and that inference can be confounded by stochastic cell state switching. Using a microfludic-based single-cell integrated proteomic and metabolic assay, we assayed for a panel of signaling, phenotypic, and metabolic regulators at four time points during the first five days of drug treatment. Dimensional reduction of the resultant data set, coupled with information theoretic analysis, uncovered a complex cell state landscape and identified two distinct paths connecting drug-naive and drug-tolerant states. Cells are shown to exclusively traverse one of the two pathways depending on the level of the lineage restricted transcription factor MITF in the drug-naive cells. The two trajectories are associated with distinct signaling and metabolic susceptibilities, and are independently druggable. Our results update the paradigm of adaptive resistance development in an isogenic cell population and offer insight into the design of more effective combination therapies
    • …
    corecore