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Abstract We propose in this paper an extension of the multi-anticipative op-
timal velocity car-following model to consider explicitly the desired following
distance. The model on the following vehicle’s acceleration is formulated as a
linear function of the optimal velocity and the desired distance, with reaction-
time delay in elements. The linear stability condition of the model is derived.
The results demonstrate that the stability of traffic flow is improved by intro-
ducing the desired following distance, increasing the time gap in the desired
following distance or decreasing the reaction-time delay. The simulation results
show that by taking into account the desired following distance as well as the
optimal velocity, the multi-anticipative model allows longer reaction-time de-
lay in achieving stable traffic flows.

Keywords Multi-anticipative model · Desired following distance · Stability
analysis · Traffic flow

1 Introduction

Car-following models, which mimic the behaviour of individual vehicles and
drivers, have been widely studied. Researchers have developed different types
of car-following models such as stimulus-response models, safe-distance mod-
els, desired headway models, psychophysical models and artificial intelligence
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models (see reviews in Refs. [1-3]). Among them, the stimulus-response mod-
els assume that the actions taken by the considered vehicle’s driver mainly
depend on the stimulus received from the preceding vehicles. The stimulus
may include the velocity of the considered vehicle, the headway, the velocity
difference between the considered vehicle and its leading vehicle, etc. [4,5].

The Gazis-Herman-Rothery (GHR) model [6], first introduced by Chan-
dler et al. [7], is a well-known stimulus-response model. The model was later
extended and calibrated by many researchers [1,2]. In this type of models, the
acceleration/deceleration of the considered vehicle depends on the velocity of
the vehicle, the headway, and the velocity difference between the considered
vehicle and its leader. Helly [8] introduced the desired following distance factor
and added some terms into the original GHR model. The resulting model is a
linear model.

The optimal velocity (OV) model first developed by Bando et al. [9] is
another well studied stimulus-response model. In the OV model, the difference
between the optimal velocity and the velocity of the considered vehicle is
assumed to be the stimulus for the driver’s actions. The OV model is capable of
reproducing many observed traffic phenomena, such as the evolution of traffic
congestion and the stop-and-go traffic. However, the calibration using field
data suggests that the OVmodel produces unrealistically high acceleration and
deceleration [10,11]. Helbing and Tilch [10], and Jiang et al. [11] introduced
the velocity difference into the OV model, and proposed the generalized force
model and the full velocity difference (FVD) model, respectively. The authors
in [12-15] extended the FVD model to consider the varying road condition,
the inter-vehicle communication and the anticipation driving behavior.

With the development and application of the intelligent transportation
systems, drivers can get the information of multiple vehicles ahead. The multi-
anticipative car-following models have been gradually developed. In the multi-
anticipative situation, the stimulus can be multiple headways, multiple velocity
differences, etc. There are mainly two types of approaches to model the multi-
anticipative behaviour.

The first type of multi-anticipative models involves the distance or the
velocity difference between two adjacent vehicles. Nagatani [16] and Ge et
al. [17] extended the difference equation model [18] by taking into account the
next-nearest-neighbour interaction and an arbitrary number of vehicles ahead,
respectively. The OV model was generalized and extended to include multi-
ple look-ahead (many-neighbour interaction) by Wilson et al. [19]. The results
presented by the authors confirm the necessity of multiple look-ahead consider-
ations. Chen et al. [20] incorporated the drivers’ reaction delay into the multi-
anticipative model [19]. They found that the multi-anticipative consideration
could partially compensate the unfavourable effect induced by driver reaction
delays. Yu et al. [21] suggested an extended OV model by taking into account
the headways of arbitrary number of preceding vehicles and the relative veloc-
ity. They derived the stability condition and the modified Korteweg-de Vries
(KdV) equation near the critical point to describe the traffic behaviours. Li
and Liu [22] proposed an extended FVD model by introducing the relative
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velocities of arbitrary number of vehicles ahead. Jin et al. [23] introduced the
headway and the velocity difference of two preceding vehicles into the FVD
model, and derived the KdV and modified KdV equations to describe the traf-
fic behaviours. The models developed by Xie et al. [24], and Peng and Sun [25]
incorporated both headways and relative velocities of multiple preceding vehi-
cles into the FVD model. Ngoduy [26] investigated the linear stability of the
multi-anticipative OV model and intelligent driver model [27] with delays. Li
et al. [28] put forwards a multi-anticipative model, which considered multiple
headway, velocity and acceleration difference.

In the second type of multi-anticipative models, the headway or the veloc-
ity difference involved is the difference between the considered vehicle and an
arbitrary preceding vehicle. Lenz et al. [29] extended the OV model by taking
into account multi-vehicle interactions. They found that the multi-anticipative
consideration can improve the stability of traffic flow. The extended model can
reproduce the fundamental properties of traffic flow and the synchronized flow.
Treiber et al. [30] proposed the multi-anticipative intelligent driver model and
compared which with the standard intelligent driver model [27]. The results in-
dicate that the multi-anticipation is a basic aspect of human driving behaviour.
The authors [31,32] extended the Helly model [8] to incorporate multiple ve-
hicle interactions. They performed an empirical study of multi-anticipation,
and concluded that the multi-anticipation was indeed present. Farhi et al. [33]
presented a multi-anticipative piecewise-linear model [34]. Hu et al. [35] intro-
duced the driver reaction delays and multi-velocity-difference into the model
[29], and suggested an extended multi-anticipative delay model. They found
that introducing the velocity difference information of multiple vehicles ahead
improves the stabilization of traffic flow.

However, none of the above multi-anticipative OV models considered the
effect of the desired following distance. In real traffic, the drivers would attempt
to achieve not only a desired or an optimal velocity, but also a desired following
distance. They would adjust their acceleration/deceleration according to this
distance and this optimal velocity.

In this paper, we extend the OV model [29] by an explicit consideration of
the desired following distance and propose a new extended multi-anticipative
car-following model. A long wavelength linear stability analysis is conducted
and the stability condition is derived. Finally, numerical simulations are carried
out to demonstrate the theoretical results.

The following notations are used in this paper:

Index

n index of vehicle
t time instant (s)
m number of preceding vehicles considered

Model variables

xn(t) position of vehicle n at time t (m)
∆xn+j,n(t) headway xn+j(t)− xn(t) (m) between the vehicle n and the

leading vehicle n+ j
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vn(t) velocity of vehicle n at time t (m/s)
∆xdes

n (t) desired following distance (m)

Model parameters

α sensitivity coefficient of a driver to the difference between the
optimal velocities and the actual velocity (1/s)

β sensitivity coefficient of a driver to the distance (1/s2)
td reaction-time delay of drivers (s)
pj weight of the optimal velocity function
qj weight of the distance ∆xn+j,n(t− td)/j
s0 stopping distance, including vehicle length (m)
T time gap (s)
a and b step-function parameters for modelling β
sc critical distance (m) in the step-function of β
V1 and V2 parameters of the optimal velocity function (m/s)
C1 parameter of the optimal velocity function (m−1)
C2 parameter of the optimal velocity function
Lc average length of vehicles (m)

2 Model

Lenz et al. [29] proposed an extended OV model to take into account multi-
vehicle interactions. The resulting multi-anticipative model was generalised by
Wilson et al. [19] as:

d2xn(t)

dt2
= α





m
∑

j=1

pjV

(

△xn+j,n(t)

j

)

−
dxn(t)

dt



 , (1)

where V (·) is the optimal velocity function, and the weight pj > 0 and
∑m

j=1 pj = 1.

Hu et al. [35] introduced the reaction-time delay of drivers into the model
(1). Eq. (2) shows the multi-anticipative model with the time delay.

d2xn(t)

dt2
= α





m
∑

j=1

pjV

(

△xn+j,n(t− td)

j

)

−
dxn(t)

dt



 . (2)

In their original formulation, Hu et al. [35] also included a term to represent
the effect of the relative velocity.

The above multi-anticipative models consider only an optimal following
velocity. In real traffic situations, drivers also attempt to achieve a desired dis-
tance from vehicles ahead. This factor is shown to have an important influence
on traffic flow [8,36,37]. In this paper, we extend the models (1) and (2) by
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capturing explicitly the effect of the desired following distance, as well as that
of the optimal velocity and the time delay. Our new model is formulated as:

d2xn(t)

dt2
= α





m
∑

j=1

pjV

(

△xn+j,n(t− td)

j

)

−
dxn(t)

dt





+ β





m
∑

j=1

qj

(

△xn+j,n(t− td)

j

)

−∆xdes
n (t)



 ,

(3)

where the weight qj > 0 and
∑m

j=1 qj = 1. In contrast to the models (1)
and (2), our proposed model (3) indicates that a driver adjusts his accelera-
tion/deceleration not only according to the optimal velocity, but also according
to the desired following distance. When β = 0 and td = 0, the model (3) is
reduced to the model described by Eq. (1). It is worth noting that the relative
velocity and the desired distance were also considered in a multi-anticipative
version of the Helly model [31,32]. In this model, the acceleration of the nth
vehicle is determined by the weighted velocity difference between the current
vehicle and the vehicles in front, and a weighted sum of the difference between
the actual and the desired distance headway to the n+j vehicle in front. While
in our model (3) the nth vehicle tends to achieve both the optimal velocity and
the desired distance, the acceleration is determined according to the difference
between the optimal velocity given by a weighted sum of several OV functions
and the velocity of vehicle n, and the difference between a weighted sum of
the distance (same as that in OV function) and the desired following distance
to the vehicle n+ 1.

In models (2) and (3), it is assumed that a driver can sense his velocity
instantaneously and only the argument of the headway ∆xn+j,n contains the
delay time, which is similar to the delayed car-following models [20,26,38-41].
The case that the headway, the velocity and the velocity difference are all
evaluated at the delayed time is mainly discussed in the autonomous cruise
control literatures [42,43]. For other traffic flow models with time delay, we
refer to [44-49].

In the literatures, the desired following distance ∆xdes
n (t) has been mod-

elled as a linear function of the vehicle velocity vn(t) [8], and other more
complex forms [8,27,50]. However, the studies of Helly [8] and Van Winsum
[51] revealed that the desired following distance can be reasonably determined
based on the linear form. In this paper, we adopt the linear form:

∆xdes
n (t) = s0 + Tvn(t), (4)

where the time gap T describes the dependence of the desired following dis-
tance on the velocity.

Following [52], we take the step function for β as :

β =

{

a, h ≤ sc,
b, h > sc,

(5)
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where h =
∑m

j=1 qj

(

△xn+j,n(t−td)
j

)

. Eq. (5) represents a two-step effect of the

desired following distance has different effects in different distance h.

In model (3), the weights pj and qj reflect the effect of the leading vehicle
n + j on the vehicle j. It is reasonable to assume that this effect gradually
reduces with increasing j, i.e. pj+1 < pj and qj+1 < qj . For convenience, we
assume pj = qj and select pj following [25]:

m
∑

j=1

pj = 1, pj =

{

(l − 1)/lj, for j 6= m,
1/lj−1, for j = m,

(6)

where the constant l can be taken as l = 2, 3, · · · . Eq. (6) gives a decreas-
ing function of pj with increasing j value. This is to represent a decreasing
influence as the leading vehicle is furthering ahead. In our simulations, l is
arbitrarily chosen as 6, thus for a m = 2, we have p1 = 5/6 and p2 = 1/6
which gives the weight on the influence of the immediate leading vehicle at
5/6, while that of the second vehicle ahead at 1/6. Following [10], the OV
function is chosen as:

V (△x) = V1 + V2tanh[C1(∆x − Lc)− C2], (7)

where V1 = 6.75 m/s, V2 = 7.91 m/s, C1 = 0.13 m−1 and C2 = 1.57. In Eq.
(7), the average length of vehicles Lc is taken as 5 m in our simulations.

3 Linear stability analysis

Stability is an important property of any car-following model. Chow [53] first
performed an analytical analysis of the stability conditions of the GHR model
[6]. Liu and Li [54] analysed the stability of the multi-regime car-following
model [5] through a numerical analysis. In this section, we investigate the long
wavelength linear stability of the new model (3) and derive analytically the
linear stability condition.

For convenience, the RHS of Eq. (3) is abbreviated as function
f(∆xn+1,n, · · · , ∆xn+m,n, vn). In the uniform traffic flow, all vehicles move
with the constant headway se. According to the work of Wilson and Ward
[55], a set of stability conditions can be analysed if there is a function ve, such
that f(se, · · · , mse, ve(se)) = 0.

In our model, there exists such ve(s) and it has the form

ve(s) =
αV (s) + β(s− s0)

α+ βT
. (8)

Then, the uniformly steady-state solution for Eq. (3) is given by

x(0)
n (t) = sen+ ve(se)t. (9)
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Let yn(t) denotes the small deviation from the steady-state solution x
(0)
n (t):

xn(t) = x
(0)
n (t)+yn(t). Substituting it into Eq. (3) and linearizing the resulting

equation, one can obtain

d2yn(t)

dt2
= α





m
∑

j=1

1

j
pjV

′(se)△yn+j,n(t− td)



− (α + βT )
dyn(t)

dt

+β





m
∑

j=1

1

j
qj△yn+j,n(t− td)



 , (10)

where△yn+j,n(t−td) = yn+j(t−td)−yn(t−td) and V ′(se) = dV (△xn)/d△xn |△xn=se .
Expanding yn(t) = Aexp(ikn+ zt), we obtain the following equation of z:

z2+(α+βT )z−αV ′(se)e
−ztd

m
∑

j=1

pj
j
(eikj−1)−βe−ztd

m
∑

j=1

qj
j
(eikj−1) = 0. (11)

By expanding z = z1(ik) + z2(ik)
2 + · · · and inserting it into Eq. (11), we

obtain the first- and second-order terms of ik:

z1 =
αV ′(se) + β

α+ βT
. (12)

z2 =
−z21 + α

∑m

j=1 pjV
′(se)(

j

2 − tdz1) + β
∑m

j=1 qj(
j

2 − tdz1)

α+ βT
. (13)

For long wavelength modes, the uniformly steady-state flow is stable if z2 > 0,
while the uniformly flow becomes unstable when z2 < 0. Thus, the neutral
stability condition is

α =
−c2 −

√

c22 − 4c1c3
2c1

, (14)

where

c1 =



V ′td −
m
∑

j=1

j

2
pj



 , c2 =



V ′ + βTV ′td + βtd − 2βT
m
∑

j=1

j

2
pj



 ,

c3 =



β − β2T 2
m
∑

j=1

j

2
pj



 .

For small disturbance of long wavelength, the uniform traffic flow becomes
unstable provided that

α <
−c2 −

√

c22 − 4c1c3
2c1

. (15)

Fig. 1 shows the neutral stability lines in the space (se, α) for different values
of a in the step function (5). The another parameter b in (5) is taken as 0. The
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parameter values are set as: td = 0.2 s, T = 1.8 s, m = 3 and sc = 70 m. In
Fig. 1, the apex of each line corresponds to the critical point. The area below
each line is the unstable region, in which the density waves appear. While
above each line, the traffic flow is stable and traffic jams do not occur. From
Fig. 1, we can see that the stable region increases with increasing value of a.
Note that the case of a = 0 in the step function (5) corresponds to the model
(2) when b = 0. Hence, the result indicates that by considering the desired
following distance, the traffic flow becomes more stable.

Fig. 2 illustrates the neutral stability curves for different values of the time
gap T in Eq. (4). The parameters are m = 2, td = 0.2 s and a = 0.5 s−2. For
comparison, the result of the model (2) is also depicted in Fig. 2. We can see
that the critical point obtained from the model (3) is lower than that of the
model (2). The stable region of our new model (3) increases with the increase
of T . This shows that the stability of traffic flow is improved by increasing the
time gap in the desired following distance.

Fig. 3 shows the neutral stability curves for different values of m when
a = 0.3 s−2. The other parameter values used are the same as those in Fig. 1.
It is found that the critical points and the neutral stability lines decrease with
the increase of m, which means that the stability of traffic flow is strengthened
by the multi-anticipative consideration. The curves for the cases of m = 3 and
m = 5 are almost coincided. This indicates that considering three vehicles
ahead is enough, which is similar to the results of other studies [17,20,25].

The neutral stability curves for different values of td are shown in Fig. 4.
The parameter is set as a = 0.3 s−2. The other parameter values used are the
same as those in Fig. 1. From Fig. 4, it can be seen that the neutral stability
curves are lowered with the decrease of td. This means that the traffic flow
will be more stable when the reaction-time delay of drivers decreases.

8 11 14 17 20 23 26
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2.5

3

s
e

α

 

 

a=0
a=0.3
a=0.4
a=0.5

unstable

stable

Fig. 1 Phase diagram in the space (se, α) for different values of a
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Fig. 2 Phase diagram in the space (se, α) for different values of a and T
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Fig. 3 Phase diagram in the space (se, α) for different values of m

4 Numerical simulations

We perform numerical simulations for our proposed new model (3) under peri-
odic boundary condition. We adopt the following numerical integration scheme
[12,13,56] for Eq. (3):

vn(t+∆t) = vn(t) +
dvn(t)

dt
∆t,

xn(t+∆t) = xn(t) + vn(t)∆t+
1

2

dvn(t)

dt
(∆t)2,

(16)

where vn(t+∆t) and xn(t+∆t) are the velocity and position of vehicle n at
time t, respectively. In our simulations, the time step ∆t is set to 0.01 s.
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We consider N = 100 vehicles running on a single-lane circular road of
length L = 1500 m. The initial disturbance is set as that in [11]:

x1(0) = 1 m, xn(0) = (n− 1)L/N m, for n 6= 1, (17)

ẋn(0) = V (L/N) m/s. (18)

In the following simulation, the distance h in the step-function (5) does not
exceed sc = 70 m, thus we adopt constant β instead of the step-function (5).

4.1 Stabilization effect of the desired following distance

We investigate the effect of the desired following distance on the stability of
traffic flow in this subsection. Fig. 5 shows the space-time evolution of the
headway for different values of β at time t between 1000 s and 1200 s. The
parameters are set as td = 0.2 s, T = 1.8 s and m = 3. Here after, the
sensitivity α and the stopping distance s0 are set and remain constant at
1.25 s−1 and 7.4 m, respectively. When β = 0, the result corresponds to that
of the model (2). When β = 0, 0.1, 0.2 and 0.3 s−2, the homogeneous flow
evolves into congestion as time develops. This congestion corresponds to stop-
and-go traffic. In addition, the amplitude of headway variation decreases with
the increase of β. This indicates that the introduction of the desired following
distance can improve the stability of traffic flow.

The effect of the desired following distance can be further illustrated in Fig.
6, where the snapshot of velocities of all vehicles at t = 300 s and t = 1000 s
are shown. When β = 0, the negative velocity appears, which is unrealistic
and needs to be overcome. It is found that from Fig. 6 the negative velocity
is avoided by introducing the desired following distance.

In the congested flow, the motion of vehicles forms a hysteresis loop in the
headway-velocity phase space. Fig. 7 exhibits the hysteresis loops for β = 0,
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0.2, 0.3 and 0.4 s−2. From Fig. 7, we can see that the size of the hysteresis loop
decreases with the increase of β, which means that the amplitude of velocity
variation is smaller and the traffic flow is more stable. When β = 0.4 s−2, the
instability condition (15) is not satisfied, and the traffic flow is stable. We can
see that the hysteresis loop will degenerate to a point.
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Fig. 5 Space-time evolution of the headway for different values of β. (a) β = 0, (b) β = 0.1,
(c) β = 0.2, (d) β = 0.3

4.2 Effect of the time gap

In this subsection, we choose m = 2 to explore the impact of the time gap
T in the desired following distance. Fig. 8 exhibits the space-time evolution
of the headway for different values of T at time t from 1000 s to 1200 s. The
parameters are set as td = 0.2 s and β = 0.25 s−2. We can find that the
amplitude of headway decreases as the time gap increases, which indicates
that the stability of traffic flow is strengthened.
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Fig. 6 Snapshot of velocities of all vehicles for different values of β. (a) t = 300 s, (b)
t = 1000 s

4.3 Effect of the reaction-time delay

We study in this subsection the effect of different reaction time delays of drivers
on traffic flow. Fig. 9 illustrates the snapshot of velocities of all vehicles for
td = 0.25 s, 0.35 s and 0.45 s when t = 2000 s. The parameter is T = 1.8 s.
When m = 3 and β = 0 (see Fig. 9(a)), the result is same as that of the
model (2). The unrealistic negative velocity appears, which indicates the model
does not allow these delay times. From Fig. 9(b), we can see that for the
same parameters the multi-anticipative model (3) with β = 0.5 s−2 avoids the
negative velocity and allows larger delay times. This suggests that introducing
the desired following distance is more reasonable and realistic. The result of
m = 1 and β = 0.5 s−2 is shown in Fig. 9(c). Comparing Fig. 9(b) with Fig.
9(c), we find that when td = 0.35 s, the negative velocity occurs for the case of
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Fig. 8 Space-time evolution of the headway for different values of T . (a) T = 1.2, (b)
T = 1.5, (c) T = 1.8, (d) T = 2.0

m = 1, while this deficiency is overcome for the case of m = 3. This indicates
that multi-anticipative consideration allows larger delay times. In addition,
we can also see from Fig. 9 that the amplitude of the curves decreases with
decreasing td, which means that the stability of traffic flow can be enhanced
with the decrease of the reaction-time delay.
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4.4 Effect of the multi-anticipation

In this subsection, we explore the effect of considering different number of
preceding vehicles. Fig. 10 shows the snapshot of velocities of all vehicles for
m = 1, 2 and 3 when t = 3500 s. The parameters are set as td = 0.2 s,
T = 1.8 s and β = 0.3 s−2. We can see from Fig. 10 that the amplitude of
velocity variation decreases with the increase of m. This means that multi-
anticipative consideration can improve the stability of traffic flow. Fig. 11
illustrates the hysteresis loops for different values of m. From Fig. 11, we find
that the hysteresis loop is reduced with increasing of m, which further shows
that the multi-anticipation has an important effect on the stability of traffic
flow.

5 Conclusions

In this paper, we presented an extended multi-anticipative model with explicit
consideration of the effect of the desired following distance on the following ve-
hicle’s acceleration and deceleration. The model is formulated as a linear com-
bination of the optimal velocity and desired following distance. The reaction-
time delay of drivers is incorporated in the effect of the distance headway. A
linear stability analysis is carried out and the stability condition is obtained.
The simulation results demonstrate that by introducing the desired following
distance, not only can the stabilization of traffic flow be enhanced, but the de-
ficiency of unrealistic negative velocity can also be avoided. This confirms that
the desired following distance has an important influence on traffic behaviour
and is an important factor to be considered in car-following models. The ana-
lytical and numerical results show that increasing the time gap in the desired
following distance can also enhance the stability of traffic flow. Although the
stability of traffic flow is weakened with the increase of the reaction-time delay
of drivers, it is essential and is necessary to construct realistic traffic flow mod-
els. We found that the model considering multi-anticipative behaviour and the
desired following distance allow larger reaction-time delay in producing stable
traffic flows.

It must be pointed out that we adopt the linear function to model the
desired following distance in this study. There are other methods of depicting
the desired following distance, such as the nonlinear functions. Thus, we should
investigate the performance of them, and compared them with the linear form
in our future work. Furthermore, the model parameters will be calibrated by
using observation data. In addition, the model will be extended to derive the
multi-anticipative macroscopic traffic flow model based on the transformation
method between the microscopic variables and the macroscopic ones.
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Fig. 9 Snapshot of velocities of all vehicles for different time delays. (a) m = 3, β = 0, (b)
m = 3, β = 0.5, (c) m = 1, β = 0.5
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Fig. 10 Snapshot of velocities of all vehicles for different values of m
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Fig. 11 The hysteresis loops for different values of m


