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An Agent-Based Approach to Assess
Drivers’ Interaction with Pre-Trip
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RONGHUI LIU
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This article reports on the practical use of a multi-agent microsimulation framework to address the issue of assessing drivers’

responses to pretrip information systems. The population of drivers is represented as a community of autonomous agents,

and travel demand results from the decision-making deliberation performed by each individual of the population as regards

route and departure time. A simple simulation scenario was devised, where pretrip information was made available to users

on an individual basis so that its effects at the aggregate level could be observed. The simulation results show that the

overall performance of the system is very likely affected by exogenous information, and these results are ascribed to demand

formation and network topology. The expressiveness offered by cognitive approaches based on predicate logics, such as the

one used in this research, appears to be a promising approximation to fostering more complex behavior modelling, allowing

us to represent many of the mental aspects involved in the deliberation process.
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INTRODUCTION

Traffic and transportation systems have long attracted great

interest among technical and scientific communities. Not only20

because of the great relevance transport systems have in soci-

ety, but also because they are likewise seen as the ground for

assessing methodologies or developing theories in a variety of

scientific fields. Solving the congestion phenomenon in urban

traffic networks and managing the limited road capacities to cope25

with the ever-increasing demand have never been more chal-

lenging than recently. The physical modification of infrastruc-

tures and the improvement of control systems are two attempts

to tackle the problem of traffic congestion that have met with

moderate success. When similar measures have been30

used to try to deal with the demand side issue, the results have

been less successful as they are primarily used to deal with the

Address correspondence to R. J. F. Rossetti, Gestão de Sistemas e Tecnolo-

gias de Informação, Universidade Atlântica, Rua dos Paióis, S/N, 2745–615

Barcarena, Portugal. E-mail: rrossetti@uatla.pt

static part of the system, namely the road network and control

mechanisms.

An alternative solution relies on dealing directly with the de-

mand side, which is the dynamic and behavioral element in the 35

system. It has been found that route and departure-time changes

are two most important effects of demand management policies

(SACTRA, 1994). Reducing the number of vehicles travelling

throughout the network at peak periods should be the instrument

leading to significant decreasing on demand for limited road ca- 40

pacity. This may be reached by adopting strategies such as in-

creasing vehicle occupancy, implementing public transport sub-

sides, re-orienting travel patterns to less congested itineraries,

or shifting them to off-peak periods; in other words, influenc-

ing travellers’ behavior somehow. This is an underlying ap- 45

proach of the Intelligent Transportation Systems (ITS) which

seeks to improve the system efficiency through the application

of distributed solutions that handle users’ needs on an individ-

ual basis (Chatterjee and McDonald, 1999). Heterogeneity, un-

certainty, and dynamics are key elements in this scenario. So, 50

how could one assess with these complex measures brought Q1

1
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about at the deployment of these new technologies through

modelling?

Representing human behavior has received special attention

from technical and scientific communities, not only traffic and55

transportation counterparts. Owing to a scope rather oriented to

the problem to be modelled, existing microscopic approaches

suffer from various shortcomings and the need for more ro-

bust and expressive modelling tools are frequently recognized

(Ettema et al., 2003; Watling, 1994). Nonetheless, much effort60

has been devoted to adapting traditional models to meet ITS

requirements and has significantly contributed to building up

the roadmap toward the development of new generation traf-

fic network models, which explicitly incorporate driver behav-

ior (Arnott et al., 1991; Mahmassani and Jayakrishnan, 1991;65

Cantarella and Cascetta, 1995; Liu et al., 1995; Bazzan et al.,

2000).

Recently, agent-based techniques have been increasingly ap-

plied in that way. Schleiffer (2000) claims that modelling het-

erogeneity in a microscopic level is a key step towards the un-70

derstanding of macroscopic behavior. The author suggests that

the use of artificial agents to represent simple fundamental in-

dividual mechanisms is the tool to better comprehend highly

complex and dynamic collective behavior of traffic. Autonomy,

social ability, reactivity, adaptability, and pro-activity are some75

important features that turn multi-agent systems (MAS) into

an interesting and appealing metaphor to represent complex do-

mains, naturally including traffic and transportation engineering

(Schleiffer, 2002).

Not surprisingly, most works report on applying the agent-80

based techniques to control systems and traffic management to

make those systems more autonomous and responsive to recur-

rent traffic demand (e.g. Hernández et al., 2002). Nonetheless, an

increasing effort has also been dedicated to representing driver

behavior and its underlying decision-making mechanism, as pro-85

posed in (e.g., Dia, 2002; Rossetti, Liu, et al., 2002; Rossetti,

Bordini, et al., 2002). The analysis of ITS systems through this

approximation has been investigated as well (e.g., Wahle et al.,

2002), and some other works report on applications to freight

transport and optimization of resource use (e.g., Haddadi, 1993;90

Adler and Blue, 2002).

Contrarily to exploring the emergent behavior of multiple

interacting reactive entities, in this work we focus on the prac-

tical implementation of a cognitive model to base the decision-

making carried out by driver agents. The driver is modelled in95

terms of a two-layered architecture in which one layer hosts a

BDI (Beliefs, Desires, and Intentions) model, whereas the other

represents the more instinctive behavior of the car-following

and lane-changing models. Thus, the mental states of the driver

agent should be the elements conditioning the cognitive be-100

havior. We named this model MADAM (Multi-Agent DemAnd

Model). Our approach relies on an extension to an existing mi-

croscopic simulation suite, DRACULA (Dynamic Route As-

signment Combining User Learning and microsimulAtion) (Liu

et al., 1995; Rossetti et al., 2000). The framework we shall105

present is intended to serve as an aid to assessing the impact

that individual driver decision-making may have on traffic con-

ditions at the aggregate level, allowing for the representation of

interactions with novel intelligent transportation solutions, such

as exogenous information systems.
110

THE BDI DRIVER AGENT

The main protagonist within MADAM is the driver. It is rep-

resented in terms of an autonomous agent, capable of making

decisions on its own. We have designed a two-layered architec-

ture to base the driver model. So, it is able to exhibit both reactive 115

and cognitive behaviors to some extent. The reactive layer relies

on a simple set of rules that map perceptions to actions. Individ-

ual drivers’ attitude in movement, in terms of car-following and

lane-changing behaviors, is performed in this layer. The more

complex decisions, such as whether to travel, which itinerary 120

to follow, and what time to start the journey are addressed

in the cognitive layer, which is built on the basis of the BDI

logics.

The architecture for the driver agent is depicted in Figure 1.

As in the basic structure of an agent (Russell and Norvig, 1995), 125
drivers can perceive facts through sensors and act onto the en-

vironment through effectors. The communication ability is also

present, which is modelled in terms of message passing. Mes-

sages are sent through actions and received as perceptions. The

reader is referred to (Rossetti, Bordini, et al., 2002) for a more 130

comprehensive explanation on this feature. When a change in

the environment happens, the agents’ knowledge base is updated

through a belief revision function. This can either be associ-

ated to the premise of a perception-action rule in the reactive

layer, or it can trigger a more sophisticated reasoning process 135
at the cognitive level. If the perception can be evaluated in both

layers, the reactive approach will always be evaluated first. If

no conclusion is drawn from the set of base rules, then a com-

plete deliberation process starts to find out a reasonable solution.

Nonetheless, frequent exercise of heavy deliberation performed 140
for some decision-makings will be transformed into a natural

aptitude in a longer-term, allowing the driver to behave more

instinctively as the result of a learning process, through which

new rules might be assimilated.

Figure 1 A two-layered architecture for the driver agent.

intelligent transportation systems vol. 9 no. 1 2005
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In this article, we focus on the cognitive ability of drivers. Rao145

and Georgeff (1991) proposed their BDI theory on the basis of

the Bratman’s principles (Bratman, 1987), which present ratio-

nal reasoning as resulting from intentions in addition to beliefs

and desires. The logics behind the work by Rao and Georgeff

(1991) present both ontological and epistemological commit-150

ments, and become a methodology suitable for representing

complex application domains where entities are endowed with

mental attitudes. In order to turn their BDI theory into practice,

Rao (1996) devised the AgentSpeak(L) language, also formal-

ized by d’Inverno and Luck (1998). The language provides a155

good means for an elegant and clear specification of BDI agents,

as claimed by Machado and Bordini (2001). However, owing to

the lack of space, we refer to (Rao, 1996; d’Inverno and Luck,

1998) for formal definitions and semantics of the AgentSpeak(L)

constructors.160

Accordingly to the AgentSpeak(L) language, our driver is

represented by the tuple 〈E , B, P , I , A, SE , SO , SI 〉, where E ,

B, P , I , and A are sets of events, base beliefs, plans, intentions,

and basic actions, respectively. The terms SE , SO , and SI are used

to designate the selection functions for events, applicable plans,165

and intentions, in this order (see Definition 6 in Rao, 1996).

In Rao’s language, the task of defining an agent is basically re-

duced to identifying the sets of base beliefs and plans. Intentions

are generated dynamically from triggering events, which can be

either external, when originated from perceptions, or internal,170

when subplans are necessary for the accomplishment of a certain

goal.

To illustrate such an approach, let us consider the habitual

driver as presented by Rossetti, Liu, and colleagues (2002).

The behavior focused departure time and route choices and was175

adapted from the decision-making approaches currently imple-

mented in DRACULA (Liu et al., 1995). Departure time is cho-

sen in response to the traveller’s previous experiences and pre-

ferred arrival time. The absolute delay for a driver m travelling

from certain origin i to a destination j on day k is given in Equa-180

tion 1, where d
(k)
i jm is the departure time, t

(k)
i jm is the travel time, and

a
(k)
i jm is the desired arrival time. Drivers are also assumed to be

indifferent to a delay of εm t
(k)
i jm (relative to the travel time expe-

rienced). Equation (2) represents the lateness actually perceived

by individuals.185

δ
(k)
i jm = d

(k)
i jm + t

(k)
i jm − a

(k)
i jm (1)

�
(k)
i jm = δ

(k)
i jm − εm t

(k)
i jm (2)

As suggested by Mahmassani and colleagues (1997), drivers

are likely to be indifferent to early arrivals. Accounting for that

fact, we consider that users only adjust their departure time for

a future journey in the case of �
(k)
i jm > 0, otherwise they will

keep the same departure time. The adjustment is made as in190

Eq. (3).

d
(k+1)
i jm =

{

d
(k)
i jm, if �

(k)
i jm ≤ 0

d
(k)
i jm − �

(k)
i jm, if �

(k)
i jm > 0

(3)

An important simplification of this model is that drivers are

virtually indifferent to early arrivals, which may not be so re-

lated to the reality of commuters. Other types of behavior

were also suggested and modelled according to this app- 195

roach and can be found in (Rossetti, Bordini, et al., 2002),

where all the plans and base beliefs were specified in

AgentSpeak(L).

Q2

The route choice model is one based on the bounded ratio-

nal behavior, as suggested by Mahmassanin and Jayakrishnan 200

(1991). Drivers are assumed to use their habit routes as on the

last day, unless the cost expected for the minimum cost route is

significantly better. Thus, a driver will use the same route unless

C p1
− C p2

> max(η × C p1
, τ ), where C p1

and C p2
are the costs

along the habit and the minimum cost routes, respectively. The 205

parameters η and τ , representing the relative and the absolute

cost improvement required for a route switch, are associated to

the trip belief of each driver agent rather than dealt with as global

variables.

THE SIMULATION ENVIRONMENT 210

A microscopic simulation environment is set up to represent

the interaction between the demand, as modelled in MADAM,

and network supply conditions. The approach relies on the exten-

sion proposed for the original DRACULA structure, as presented

by Rossetti and colleagues (2000). 215

The DRACULA model is a microscopic traffic simulation

suite that has been developed in the Institute for Transport Stud-

ies, University of Leeds (Liu et al., 1995). A key element of the

DRACULA model is variability. Two concepts are of central im-

portance in its structure, namely the day-to-day dynamics and the 220

within-day decision-making process. The former is concerned

with modelling how the state of the network changes over time,

while in the latter all choices regarding a journey are assigned

to individuals. In the day-to-day formulation, the spatial knowl-

edge of a driver is constantly evolving in response to trips made 225

through the network on a daily basis. Also, travel goals, travel

needs, perceptions, behavioral patterns, and cognitive abilities

that influence the choice process are given in terms of the state

of those variables at the instant the choice is being undertaken.

This is rather a centralized mechanism performed by a single 230

module over all drivers.

The main choice dimensions available in DRACULA are

route and departure time, although its modularity allows for the

development of other ones, such as an en-route diversion capa-

bility. On each day when a driver is supposed to perform a trip, 235

he is launched onto the network at the departure time and fol-

lows his chosen route to the destination. The experienced costs

(given in terms of travel time along the route on a link-by-link

basis) are taken into account for future journeys. In our approach,

MADAM will play the demand side in the DRACULA simula- 240

tion framework. Rather than representing travel choices through

variable values in a simple data structure, demand results from

the cognition mechanism of each single BDI driver agent. The

intelligent transportation systems vol. 9 no. 1 2005
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Figure 2 The MADAM+DRACULA simulation framework.

conceptual framework integrating MADAM and DRACULA is

presented in Figure 2.245

On the Demand side, day-to-day variability is represented

in terms of individuals that have decided to travel on a cer-

tain day. Decision-makings are driven by mental attitudes of

each of our BDI agents. JAM (Hubber, 1999) was used to un-
Q3

derlie the implementation of the AgentSpeak(L) specifications250

of the driver behaviors. On the Supply side, the movement is

represented on a microscopic basis, which implements both car-

following and lane-changing models. Dracprep sets network

conditions on each day (road capacity may vary due to weather,

parked cars, and accidents, for instance) whereas Dracsim ac-255

tually executes the microscopic simulation of each individual’s

trip.

The MA Initialisation module synthesises the population for

the experiment from an OD matrix and route alternatives are

assigned to each driver from a list of possible routes for each260

origin and destination pair. The initial set of base beliefs for each

driver agent of the population can be either generated after a first

run of the Supply side, so that the usual desired arrival time is

estimated, or set to default values.

The Input MA file gathers drivers’ decisions on route and265

departure time, so that they can be launched onto the network

to perform their journeys at selected departure times on each

day. On the other hand, the Output MA file returns the travel

costs experienced by each driver in terms of the travel time

experienced (these are the perceptions of each driver during270

the course of the journey simulated in DRACULA) and the base

beliefs sets are updated. On the following day, the driver uses his

updated beliefs to make his decision and this process is repeated

all over for a specified number of days, which is defined at the

beginning of the simulation.275

A SIMPLE SIMULATION EXPERIMENT

Some experiments were carried out in order to demonstrate

the methodological approach presented in this work. A small

network with 54 links (unidirectional road segments) connected

through 14 junctions was selected for this purpose. The network280

is schematically represented in Figure 3. Most road junctions

Figure 3 A schematic representation of the network. The zone numbers of

the three main OD pairs are displayed in squares, also displayed are the nodes

within the possible itineraries between them.

follow a priority regime, whereas two of which are governed by

traffic signals (at nodes 15 and 17).

In this simple example, demand is generated from a popula-

tion of 2,323 habitual drivers who wish to travel in a one-hour 285

morning peak period, and their day-to-day choices on route and

departure time are simulated. The agents can perform their trips

to/from 11 zones, that is, there are 11 zones generating traffic

onto and 11 zones draining traffic from the network. A hypo-

thetical morning peak period starting at hour eight is considered 290

and the simulation is carried out from day zero to day 100.

In a first scenario, no exogenous information was considered

and drivers were expected to choose route and departure time ac-

cording to the habitual behavior presented earlier. The evolution

of the departure time for a habitual driver over the simulation 295

period is depicted in Figure 4. This behavior is very tolerant to

early arrivals, as only the perceived lateness is considered for

departure time adjustment on the next day. Thus, as long as the

arrival time on each day is kept below the lateness tolerance,

which is relative to the travel time, the departure time on the 300

next day will be repeated. Variability in travel time is ascribed

to the stochastic nature of the environment, which is emulated

by the supply side of the framework. Thus, even if the driver

keeps the same departure time, arrival will be subject to the

trip experienced on each day, in terms of the actual travel time 305

perceived.

This behavior has a direct influence onto the system perfor-

mance, as the average travel time for all the drivers in the popu-

lation converges very quickly (mean-square-root errors [MSRE]

intelligent transportation systems vol. 9 no. 1 2005
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Figure 4 The departure time behavior of a habitual driver.

close to zero), as depicted in Figure 5. Thus, longer journeys are310
not actually a problem for such habitual drivers. The longer the

trip the more tolerant the driver is with regard to lateness. Also,

the driver can easily afford long trips provided he is able to arrive

Figure 5 System performance for a population of habitual drivers.

earlier than his perceived lateness so as to meet the scheduled

delay.

In order to test the ability of our approach to cope with the rep- 315

resentation of pretrip information sources and their interactions

intelligent transportation systems vol. 9 no. 1 2005



January 13, 2005 0:50 806 TJ1408-02-48558

6 R. J. F. ROSSETTI and R. LIU

Table 1 Demand compositions for the experiments carried out

Demand composition

Total number Agents in each Fraction of

of agents observed OD pair informed users

2323 agents 285 agents, from 109 to 105 0%

25%

202 agents, from 105 to 104 50%

75%

12 agents, from 101 to002 100%

with drivers, two incidents were introduced (in terms of one-

lane suppression) in the links from node nine to node 15, and

from node 31 to node 21, as indicated in Figure 3. In this sec-

ond scenario, the incidents were programmed to start on day

50 and to last for the whole peak period until day 100. At the320

beginning of each day, users of pretrip information systems are

supplied with updated information on the prevailing conditions

of the network, so that drivers can revaluate their choices. Three

different origin-destination (OD) pairs were observed then. Dif-

ferent fractions of informed drivers were considered in different325

runs of the experiment (see Table 1 for different compositions

of population), which represent the percentage of drivers that

effectively use the information provided. After being informed

that a link within its itinerary is probably congested, the driver

agent tries to select the best alternative path among those that330

do not include the link affected by the incident. If it is not pos-

sible to avoid the constrained link, then the driver keeps on his

original route choice.

Possible paths for each OD pair observed in this experiment

are listed in Table 2. As we shall see in the simulation results,335

one OD pair seems to be affected to some extent by the flow

incurring in another. This is quite reasonable as routes between

different OD pairs may possibly share one or more common

links. Moreover, even if the traffic flows in opposite directions

between some common nodes, turning manoeuvres of drivers340
travelling within one OD pair may disturb trips of drivers trav-

elling within the other OD pair.

The simulation results were plotted in the graphs of Figures 6,

7, and 8 to represent the average travel time for each OD pair ob-

served over the total number of days simulated. In Figure 6, the345

Table 2 Possible itineraries for each OD pair observed

Possible Itineraries

OD pair Nodes within each route

109–105 {1, 5, 9, 15, 28, 30, 31, 35}
{1, 5, 6, 7, 10, 17, 24, 30, 31, 35}
{1, 5, 9, 15, 16, 17, 24, 21, 31, 35}

105–104 {35, 31, 21, 18}
{35, 31, 30, 24, 21, 18}

101–002 {14, 15, 9, 5, 6, 7, 8}
{14, 15, 16, 17, 10, 7, 8}

average travel time for trips performed from origin 109 to desti-

nation 105 experiences an increase after day 50, for all fractions

of informed drivers. This is the most populated OD pair of the

network, and three possible routes are considered. The incident

on links, 9–15 directly affects two of these routes, whereas the 350

third option will also be conditioned as the traffic jam extrap-

olates to links, 1–5. Thus, all alternatives are influenced by the

lane suppression in links, 9–15 in their very early stages. This

way, a considerable increase in travel time is observed for this

OD pair. Nonetheless, there is a tendency for the average travel 355

time to settle down after the introduction of the incidents onto the

network, although at higher levels. Also, the information pro-

vided seems to have a direct impact on such aggregate behavior,

as the different compositions of the populations, in terms of ex-

ogenous information users, tend to stabilize at different levels. 360

For this specific OD pair, the best level is reached when 50%

of the drivers are informed about the incident prior to starting

their journeys. The results also show that the worst levels are

yielded when none or only few (25%) of the drivers have access

to the information about the incident for this OD pair, as already 365

suggested in other works (e.g., Arnott et al., 1991; Bazzan et al.,

2000).

For drivers performing their trips between zones 105 and 104,

the results may seem to be counterintuitive at a first glance. In-

deed, contrarily to what has been observed for the first OD pair, 370

average travel time tends to settle down in better levels after the

incidents are introduced onto the network. One possible reason is

that all route options from zone 109 to zone 105 cross most links

of routes from zone 105 to zone 104 in the opposite direction.

Thus, as the traffic within the 109-105 OD pair becomes very 375

conditioned after day 50, trips within the 105-104 OD pair seem

to be lesser affected by traffic interaction at intersections. Nev-

ertheless, travel time also tends to settle down at different levels

for each composition of the population, although a decrease has

been observed in this case. However, the best situation is verified 380

when the whole population is informed about the network con-

ditions, that means when all the drivers travelling through that

OD pair avoid the route with the constrained link. This again

may be explained by the traffic interactions with other OD pairs

within the network. The worst case still happens when none of 385

the drivers is aware of the incidents, in a similar way as for the

case of the previous OD pair.

The third OD pair observed is the one with origin at zone 101

and destination at zone 002, illustrated by the graph of Figure 8.

Oppositely to the previous OD pairs selected, in this case trips 390

are not directly influenced by the incidents, as none of the links

with one-lane suppression is within the possible itineraries from

zone 101 to zone 002. Nonetheless, this OD pair is very illus-

trative of the effects of traffic interaction on the performance of

the whole network. The movement through nodes 9-5-6 is com- 395

pletely conditioned by the gap distribution that arises from the

traffic through nodes 1-5-9, which on the other hand is directly

affected by the one-lane suppression on link 9-5. Again, travel

time settles down in different levels for each demand composi-

tion, in terms of informed drivers. A completely noninformed 400

intelligent transportation systems vol. 9 no. 1 2005
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Figure 6 Average travel time for drivers travelling from origin 109 to destination 105.

population seems to present an increasing behavior in travel

time, whereas the best situations are achieved when the greater

part of the population is aware of the traffic conditions and avoid

itineraries through nodes 9-5-6.

Figure 7 Average travel time for drivers travelling from origin 105 to destination 104.

From the examples presented above, it is important to notice 405

that informing all drivers will not always produce the best result,

as already suggested in other works (Arnott et al., 1991; Bazzan

et al., 2000). However, contrarily to what has been observed

intelligent transportation systems vol. 9 no. 1 2005



January 13, 2005 0:50 806 TJ1408-02-48558

8 R. J. F. ROSSETTI and R. LIU

Figure 8 Average travel times for drivers travelling from origin 101 to destination 002.

for route options in a single OD pair scenario (Bazan et al.,

2000), traffic interaction seems to have a great influence on the

effects of exogenous information provided to drivers. This way,410

network topology and demand composition become factors of

great importance when information systems are to be applied as

an attempt at improving the overall system performance. As sug-

gested by Arnott et al. (1991), exogenous information should be

used with caution, as some important issues on the efficiency and415

interaction with such technologies remain to be fully explained

and understood.

CONCLUSIONS

In this work we modelled demand as a population of au-

tonomous agents and we used the Rao and Georgeff’s (1991)420

formalism to underlie the cognitive behavior of drivers. Also,

we presented a framework to aid the assessment of pretrip in-

formation technologies and their effects on drivers’ decision-

making. The use of mental attitudes, such as beliefs, desires, and

intentions allows for an appropriate representation of drivers’425

cognition on trip parameters, as proposed in previous works

(Dia and Purchase, 1999; Rossetti, Liu, et al., 2002; Rossetti,

Bordini, et al., 2002).

The simple scenarios simulated within MADAM+

DRACULA have shown the ability of our framework to cope430

with the assessment of pretrip information systems and their

interactions with drivers. Nonetheless, we believe this can be

extended in such a way that other ITS-based technologies can

also be modelled and evaluated in more realistic scenarios. The

very first step following this work toward such an enhanced 435

environment is to overcome the weak integration between the

multi-agent demand model and the microscopic simulation of

supply in terms of agents’ en route decision-making behavior.

After accomplishing this aim, modelling more complex scenar-

ios including dynamic route guidance will be possible as well. 440

We also plan to devise a methodological approach that allows

for the representation of more realistic behaviors, including their

calibration and validation against real world observation. Dia

and Purchase (1999) have proposed a survey of driver behaviors

to provide useful insight into the characteristics of commuters, 445

their preferences and thresholds, as further discussed in (Dia,

2002). Results from such a survey could be easily specified in

terms of AgentSpeak(L) constructors. The use of virtual simu-

lated environments, such as the one implemented in Vladimir

(Bonsall et al., 1997), could also serve to this purpose. 450

Unfortunately, a high computation has been noticed while

simulating the simple scenarios herein presented, and this is an

important issue to overcome for larger networks. In our simu-

lation set-up, a population of 2,323 BDI drivers took approx-

imately ten hours’ computer processing unit time, running se- 455

quentially in a personal computer featured with an AMD Athlon Q4

processor at 1.1 GHz. In fact, cognitive approaches, such as the

one adopted in this work, have been found to be very suitable

from a psychological perspective, as all mental attitudes are

accounted for when modelling the complex nature of the hu- 460

man reasoning. However, only systems with a reduced number

of decision-making entities have been represented in terms of

intelligent transportation systems vol. 9 no. 1 2005
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cognitive models. On the other hand, reactive solutions relying

on the overall behavior emerging from the interaction of simpler

agent structures have proven to be very effective when applied465

to larger data sets (Balmer et al., 2003; Gloor et al., 2004).

Thus, a coupling of both behaviors within the layered architec-

ture we have proposed could be the basis for profiting from the

qualities of the reactive and the cognitive approaches. Indeed,

the frequent exercise of heavy deliberation performed for some470

decision-makings is very likely to be transformed into a natu-

ral aptitude in a longer-term, allowing the individual to behave

more instinctively as the result of a learning process, through

which new rules might be assimilated. So, complex driver be-

haviors could be modelled and analyzed on a individual basis in475

a cognitive level, while the simpler reactive behavior could be

used to assess the overall system performance in complex and

highly dynamic scenarios on aggregate basis.
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