85 research outputs found

    Ten Proofs of the Generalized Second Law

    Full text link
    Ten attempts to prove the Generalized Second Law of Thermodyanmics (GSL) are described and critiqued. Each proof provides valuable insights which should be useful for constructing future, more complete proofs. Rather than merely summarizing previous research, this review offers new perspectives, and strategies for overcoming limitations of the existing proofs. A long introductory section addresses some choices that must be made in any formulation the GSL: Should one use the Gibbs or the Boltzmann entropy? Should one use the global or the apparent horizon? Is it necessary to assume any entropy bounds? If the area has quantum fluctuations, should the GSL apply to the average area? The definition and implications of the classical, hydrodynamic, semiclassical and full quantum gravity regimes are also discussed. A lack of agreement regarding how to define the "quasi-stationary" regime is addressed by distinguishing it from the "quasi-steady" regime.Comment: 60 pages, 2 figures, 1 table. v2: corrected typos and added a footnote to match the published versio

    Approaching the Problem of Time with a Combined Semiclassical-Records-Histories Scheme

    Full text link
    I approach the Problem of Time and other foundations of Quantum Cosmology using a combined histories, timeless and semiclassical approach. This approach is along the lines pursued by Halliwell. It involves the timeless probabilities for dynamical trajectories entering regions of configuration space, which are computed within the semiclassical regime. Moreover, the objects that Halliwell uses in this approach commute with the Hamiltonian constraint, H. This approach has not hitherto been considered for models that also possess nontrivial linear constraints, Lin. This paper carries this out for some concrete relational particle models (RPM's). If there is also commutation with Lin - the Kuchar observables condition - the constructed objects are Dirac observables. Moreover, this paper shows that the problem of Kuchar observables is explicitly resolved for 1- and 2-d RPM's. Then as a first route to Halliwell's approach for nontrivial linear constraints that is also a construction of Dirac observables, I consider theories for which Kuchar observables are formally known, giving the relational triangle as an example. As a second route, I apply an indirect method that generalizes both group-averaging and Barbour's best matching. For conceptual clarity, my study involves the simpler case of Halliwell 2003 sharp-edged window function. I leave the elsewise-improved softened case of Halliwell 2009 for a subsequent Paper II. Finally, I provide comments on Halliwell's approach and how well it fares as regards the various facets of the Problem of Time and as an implementation of QM propositions.Comment: An improved version of the text, and with various further references. 25 pages, 4 figure

    Higher-Dimensional Black Holes: Hidden Symmetries and Separation of Variables

    Full text link
    In this paper, we discuss hidden symmetries in rotating black hole spacetimes. We start with an extended introduction which mainly summarizes results on hidden symmetries in four dimensions and introduces Killing and Killing-Yano tensors, objects responsible for hidden symmetries. We also demonstrate how starting with a principal CKY tensor (that is a closed non-degenerate conformal Killing-Yano 2-form) in 4D flat spacetime one can "generate" 4D Kerr-NUT-(A)dS solution and its hidden symmetries. After this we consider higher-dimensional Kerr-NUT-(A)dS metrics and demonstrate that they possess a principal CKY tensor which allows one to generate the whole tower of Killing-Yano and Killing tensors. These symmetries imply complete integrability of geodesic equations and complete separation of variables for the Hamilton-Jacobi, Klein-Gordon, and Dirac equations in the general Kerr-NUT-(A)dS metrics.Comment: 33 pages, no figures, updated references and corrected typo

    Prospects for e+e- physics at Frascati between the phi and the psi

    Get PDF
    We present a detailed study, done in the framework of the INFN 2006 Roadmap, of the prospects for e+e- physics at the Frascati National Laboratories. The physics case for an e+e- collider running at high luminosity at the phi resonance energy and also reaching a maximum center of mass energy of 2.5 GeV is discussed, together with the specific aspects of a very high luminosity tau-charm factory. Subjects connected to Kaon decay physics are not discussed here, being part of another INFN Roadmap working group. The significance of the project and the impact on INFN are also discussed. All the documentation related to the activities of the working group can be found in http://www.roma1.infn.it/people/bini/roadmap.html.Comment: INFN Roadmap Report: 86 pages, 25 figures, 9 table

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF
    corecore