85 research outputs found
Recommended from our members
Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls
Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (gamma) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC(4)RS) and ground-based (SOAS) observations over the southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx = NO + NO2) over the southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3% from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gasphase precursors, isoprene epoxydiols (IEPOX, 58% of isoprene SOA) from the low-NOx pathway and glyoxal (28 %) from both low-and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation), but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate on aerosol acidity and volume). The US Environmental Protection Agency (EPA) projects 2013-2025 decreases in anthropogenic emissions of 34% for NOx (leading to a 7% increase in isoprene SOA) and 48% for SO2 (35% decrease in isoprene SOA). Reducing SO2 emissions decreases sulfate and isoprene SOA by a similar magnitude, representing a factor of 2 co-benefit for PM2.5 from SO2 emission controls
Ten Proofs of the Generalized Second Law
Ten attempts to prove the Generalized Second Law of Thermodyanmics (GSL) are
described and critiqued. Each proof provides valuable insights which should be
useful for constructing future, more complete proofs. Rather than merely
summarizing previous research, this review offers new perspectives, and
strategies for overcoming limitations of the existing proofs. A long
introductory section addresses some choices that must be made in any
formulation the GSL: Should one use the Gibbs or the Boltzmann entropy? Should
one use the global or the apparent horizon? Is it necessary to assume any
entropy bounds? If the area has quantum fluctuations, should the GSL apply to
the average area? The definition and implications of the classical,
hydrodynamic, semiclassical and full quantum gravity regimes are also
discussed. A lack of agreement regarding how to define the "quasi-stationary"
regime is addressed by distinguishing it from the "quasi-steady" regime.Comment: 60 pages, 2 figures, 1 table. v2: corrected typos and added a
footnote to match the published versio
Approaching the Problem of Time with a Combined Semiclassical-Records-Histories Scheme
I approach the Problem of Time and other foundations of Quantum Cosmology
using a combined histories, timeless and semiclassical approach. This approach
is along the lines pursued by Halliwell. It involves the timeless probabilities
for dynamical trajectories entering regions of configuration space, which are
computed within the semiclassical regime. Moreover, the objects that Halliwell
uses in this approach commute with the Hamiltonian constraint, H. This approach
has not hitherto been considered for models that also possess nontrivial linear
constraints, Lin. This paper carries this out for some concrete relational
particle models (RPM's). If there is also commutation with Lin - the Kuchar
observables condition - the constructed objects are Dirac observables.
Moreover, this paper shows that the problem of Kuchar observables is explicitly
resolved for 1- and 2-d RPM's. Then as a first route to Halliwell's approach
for nontrivial linear constraints that is also a construction of Dirac
observables, I consider theories for which Kuchar observables are formally
known, giving the relational triangle as an example. As a second route, I apply
an indirect method that generalizes both group-averaging and Barbour's best
matching. For conceptual clarity, my study involves the simpler case of
Halliwell 2003 sharp-edged window function. I leave the elsewise-improved
softened case of Halliwell 2009 for a subsequent Paper II. Finally, I provide
comments on Halliwell's approach and how well it fares as regards the various
facets of the Problem of Time and as an implementation of QM propositions.Comment: An improved version of the text, and with various further references.
25 pages, 4 figure
Recommended from our members
Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines.
Since amphibian declines were first proposed as a global phenomenon over a quarter century ago, the conservation community has made little progress in halting or reversing these trends. The early search for a "smoking gun" was replaced with the expectation that declines are caused by multiple drivers. While field observations and experiments have identified factors leading to increased local extinction risk, evidence for effects of these drivers is lacking at large spatial scales. Here, we use observations of 389 time-series of 83 species and complexes from 61 study areas across North America to test the effects of 4 of the major hypothesized drivers of declines. While we find that local amphibian populations are being lost from metapopulations at an average rate of 3.79% per year, these declines are not related to any particular threat at the continental scale; likewise the effect of each stressor is variable at regional scales. This result - that exposure to threats varies spatially, and populations vary in their response - provides little generality in the development of conservation strategies. Greater emphasis on local solutions to this globally shared phenomenon is needed
Higher-Dimensional Black Holes: Hidden Symmetries and Separation of Variables
In this paper, we discuss hidden symmetries in rotating black hole
spacetimes. We start with an extended introduction which mainly summarizes
results on hidden symmetries in four dimensions and introduces Killing and
Killing-Yano tensors, objects responsible for hidden symmetries. We also
demonstrate how starting with a principal CKY tensor (that is a closed
non-degenerate conformal Killing-Yano 2-form) in 4D flat spacetime one can
"generate" 4D Kerr-NUT-(A)dS solution and its hidden symmetries. After this we
consider higher-dimensional Kerr-NUT-(A)dS metrics and demonstrate that they
possess a principal CKY tensor which allows one to generate the whole tower of
Killing-Yano and Killing tensors. These symmetries imply complete integrability
of geodesic equations and complete separation of variables for the
Hamilton-Jacobi, Klein-Gordon, and Dirac equations in the general
Kerr-NUT-(A)dS metrics.Comment: 33 pages, no figures, updated references and corrected typo
Prospects for e+e- physics at Frascati between the phi and the psi
We present a detailed study, done in the framework of the INFN 2006 Roadmap,
of the prospects for e+e- physics at the Frascati National Laboratories. The
physics case for an e+e- collider running at high luminosity at the phi
resonance energy and also reaching a maximum center of mass energy of 2.5 GeV
is discussed, together with the specific aspects of a very high luminosity
tau-charm factory. Subjects connected to Kaon decay physics are not discussed
here, being part of another INFN Roadmap working group. The significance of the
project and the impact on INFN are also discussed. All the documentation
related to the activities of the working group can be found in
http://www.roma1.infn.it/people/bini/roadmap.html.Comment: INFN Roadmap Report: 86 pages, 25 figures, 9 table
- …