89 research outputs found

    Experimental validation of a FSW model with an enhanced friction model: application to a threaded cylindrical pin tool

    Get PDF
    This work adopts a fast and accurate two-stage computational strategy for the analysis of FSW (Friction stir welding) processes using threaded cylindrical pin tools. The coupled thermo-mechanical problem is equipped with an enhanced friction model to include the effect of non-uniform pressure distribution under the pin shoulder. The overall numerical strategy is successfully validated by the experimental measurements provided by the industrial partner (Sapa). The verification of the numerical model using the experimental evidence is not only accomplished in terms of temperature evolution but also in terms of torque, longitudinal, transversal and vertical forces

    Experimental validation of an FSW model with an enhanced friction law: application to a threaded cylindrical pin tool

    Get PDF
    This work adopts a fast and accurate two-stage computational strategy for the analysis of FSW (Friction stir welding) processes using threaded cylindrical pin tools. The coupled thermo-mechanical problem is equipped with an enhanced friction model to include the effect of non-uniform pressure distribution under the pin shoulder. The overall numerical strategy is successfully validated by the experimental measurements provided by the industrial partner (Sapa). The verification of the numerical model using the experimental evidence is not only accomplished in terms of temperature evolution but also in terms of torque, longitudinal, transversal and vertical forces.Peer ReviewedPostprint (published version

    Composite Aluminum-Copper Sheet Material by Friction Stir Welding and Cold Rolling

    No full text
    An aluminum alloy and a pure copper material were butt-joined by friction stir welding and subsequently cold rolled. The cold-rolling operation proved to be very advantageous because small voids present after friction stir welding were closed, the interface area per material thickness was enlarged, a thin intermetallic layer was partitioned, and the joint was strengthened by strain hardening. Tensile test specimens fractured in the heat-affected zone in the aluminum material; tensile strengths of the joints exceeded the tensile strengths of the base materials and were as high as 335 MPa. During soft annealing of the composite material, a 6-8-μm-thick intermetallic layer was grown at the interface. Nevertheless, tensile fracture still occurred in the heat-affected zone of the aluminum material. Electrical resistivity of the joint was smaller than resistivity of the aluminum material. Production of such composite material would result in coiled sheet material that could be subjected to further treatments such as electroplating and forming operations in an efficient and economically viable manner. The new composite material is promising for emerging automotive and industrial electrical applications.Funding Agencies|Sapa Group research program on Application Technology||</p

    Enhanced friction model for Friction Stir Welding (FSW) analysis: simulation and experimental validation

    No full text
    Friction is one of the main heat generation mechanisms in Friction Stir Welding (FSW). This phenomenon occurs between the pin and the workpiece as the rotating tool moves along the weld line. An accurate friction model is essential for obtaining realistic results in a FSW simulation in particular temperature, forces and torque. In this work, a modified Norton's friction law is developed. The suggested enhanced friction model aims at providing not only the realistic temperature field but also the forces and torque. This model does not exclusively relate the frictional shear stress to the sliding velocity; conversely it takes into account the effect of non-uniform pressure distribution under the shoulder, as this latter has an important role in the process of heat generation. Longitudinal, transversal and vertical forces and torque are numerically calculated. The effect of the enhanced friction model is reflected in these forces. In particular, it leads to a more realistic estimation of the transversal and longitudinal forces in comparison with the results obtained using former models. The friction model is successfully validated by the experimental measurements provided by the industrial partner (Sapa). The experimental analysis is performed for the material characterization, the calibration of the friction model and, more generally, the assessment of the overall numerical strategy proposed for the FSW simulation.Peer Reviewe
    corecore