793 research outputs found
Searching for "monogenic diabetes" in dogs using a candidate gene approach
BACKGROUND: Canine diabetes is a common endocrine disorder with an estimated breed-related prevalence ranging from 0.005% to 1.5% in pet dogs. Increased prevalence in some breeds suggests that diabetes in dogs is influenced by genetic factors and similarities between canine and human diabetes phenotypes suggest that the same genes might be associated with disease susceptibility in both species. Between 1-5% of human diabetes cases result from mutations in a single gene, including maturity onset diabetes of the adult (MODY) and neonatal diabetes mellitus (NDM). It is not clear whether monogenic forms of diabetes exist within some dog breeds. Identification of forms of canine monogenic diabetes could help to resolve the heterogeneity of the condition and lead to development of breed-specific genetic tests for diabetes susceptibility. RESULTS: Seventeen dog breeds were screened for single nucleotide polymorphisms (SNPs) in eighteen genes that have been associated with human MODY/NDM. Six SNP associations were found from five genes, with one gene (ZFP57) being associated in two different breeds. CONCLUSIONS: Some of the genes that have been associated with susceptibility to MODY and NDM in humans appear to also be associated with canine diabetes, although the limited number of associations identified in this study indicates canine diabetes is a heterogeneous condition and is most likely to be a polygenic trait in most dog breeds. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/2052-6687-1-8) contains supplementary material, which is available to authorized users
The change in glycaemic control immediately after COVID-19 vaccination in people with type 1 diabetes
Aims: Evidence suggests that some people with type 1 diabetes mellitus (T1DM) experience temporary instability of blood glucose (BG) levels after COVID-19 vaccination. We aimed to assess this objectively. Methods: We examined the interstitial glucose profile of 97 consecutive adults (age ≥ 18 years) with T1DM using the FreeStyle Libre® flash glucose monitor in the periods immediately before and after their first COVID-19 vaccination. The primary outcome measure was percentage (%) interstitial glucose readings within the target range 3.9–10 mmol/L for 7 days prior to the vaccination and the 7 days after the vaccination. Data are mean ± standard error. Results: There was a significant decrease in the % interstitial glucose on target (3.9–10.0) for the 7 days following vaccination (mean 52.2% ± 2.0%) versus pre-COVID-19 vaccination (mean 55.0% ± 2.0%) (p = 0.030). 58% of individuals with T1DM showed a reduction in the 'time in target range' in the week after vaccination. 30% showed a decrease of time within the target range of over 10%, and 10% showed a decrease in time within target range of over 20%. The change in interstitial glucose proportion on target in the week following vaccination was most pronounced for people taking metformin/dapagliflozin + basal bolus insulin (change −7.6%) and for people with HbA1c below the median (change −5.7%). Conclusion: In T1DM, we have shown that initial COVID-19 vaccination can cause temporary perturbation of interstitial glucose, with this effect more pronounced in people talking oral hypoglycaemic medication plus insulin, and when HbA1c is lower
The UK DNA banking network: a “fair access” biobank
The UK DNA Banking Network (UDBN) is a secondary biobank: it aggregates and manages resources (samples and data) originated by others. The network comprises, on the one hand, investigator groups led by clinicians each with a distinct disease specialism and, on the other hand, a research infrastructure to manage samples and data. The infrastructure addresses the problem of providing secure quality-assured accrual, storage, replenishment and distribution capacities for samples and of facilitating access to DNA aliquots and data for new peer-reviewed studies in genetic epidemiology. ‘Fair access’ principles and practices have been pragmatically developed that, unlike open access policies in this area, are not cumbersome but, rather, are fit for the purpose of expediting new study designs and their implementation. UDBN has so far distributed >60,000 samples for major genotyping studies yielding >10 billion genotypes. It provides a working model that can inform progress in biobanking nationally, across Europe and internationally
A TOMM40 poly-T variant modulates gene expression and is associated with vocabulary ability and decline in nonpathologic aging
The Translocase of Outer Mitochondrial Membrane 40 Homolog and Apolipoprotein E (TOMM40-APOE) locus has been associated with a number of age-related phenotypes in humans including nonpathologic cognitive aging, late-onset Alzheimer's disease, and longevity. Here, we investigate the influence of the TOMM40 intron 6 poly-T variant (rs10524523) on TOMM40 gene expression and cognitive abilities and decline in a cohort of 1613 community-dwelling elderly volunteers who had been followed for changes in cognitive functioning over a period of 14 years (range = 12–18 years). We showed that the shorter length poly-T variants were found to act as a repressor of luciferase gene expression in reporter gene constructs. Expression was reduced to approximately half of that observed for the very long variant. We further observed that the shorter poly-T variant was significantly associated with reduced vocabulary ability and a slower rate of vocabulary decline with age compared to the very long poly-T variants. No significant associations were observed for memory, fluid intelligence or processing speed, although the direction of effect, where the short variant was correlated with reduced ability and slower rate of decline was observed for all tests. Our results indicate that the poly-T variant has the ability to interact with transcription machinery and differentially modulate reporter gene expression and influence vocabulary ability and decline with age
Molecular analysis of HLA-DQB1 alleles in childhood common acute lymphoblastic leukaemia.
Epidemiological studies suggest that childhood common acute lymphoblastic leukaemia (c-ALL) may be the rare outcome of early post-natal infection with a common infectious agent. One of the factors that may determine whether a child succumbs to c-ALL is how it responds to the candidate infection. Since immune responses to infection are under the partial control of (human leucocyte antigen) HLA genes, an association between an HLA allele and c-ALL could provide support for an infectious aetiology. To define the limit of c-ALL susceptibility within the HLA region, we have compared HLA-DQB1 allele frequencies in a cohort of 62 children with c-ALL with 76 newborn controls, using group-specific polymerase chain reaction (PCR) amplification, and single-strand conformation polymorphism (SSCP) analysis. We find that a significant excess of children with c-ALL type for DQB1*05 [relative risk (RR): 2.54, uncorrected P=0.038], and a marginal excess with DQB1*0501 (RR: 2.18; P=0.095). Only 3 of the 62 children with c-ALL have the other susceptibility allele, DPB1*0201 as well as DQB1*0501, whereas 15 had one or the other allele. This suggests that HLA-associated susceptibility may be determined independently by at least two loci, and is not due to linkage disequilibrium. The combined relative risk of the two groups of children with DPB1*0201 and/or DQB1*0501 is 2.76 (P=0.0076). Analysis of amino acids encoded by exon 2 of DQB1 reveal additional complexity, with significant (P<0.05) or borderline-significant increases in Gly26, His30, Val57, Glu66-Val67 encoding motifs in c-ALL compared with controls. Since these amino acids are not restricted to DQB1*0501, our results suggest that, as with DPB1, the increased risk of c-ALL associated with DQB1 is determined by specific amino acid encoding motifs rather than by an individual allele. These results also suggest that HLA-associated susceptibility to c-ALL may not be restricted to the region bounded by DPB1 and DQB1
Paleo-landscapes of the Northern Patagonian Massif, Argentina
Fil: Aguilera, Emilia Yolanda. Instituto de Geomorfología y Suelos (IGS). Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata; ArgentinaFil: Rabassa, Jorge. Laboratorio de Geomorfología y Cuaternario. CADIC. Universidad Nacional de Tierra del Fuego; ArgentinaFil: Aragón, Eugenio. Centro de Investigaciones Geológicas (CIG). Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata; Argentin
Efficient Computation of Casimir Interactions between Arbitrary 3D Objects
We introduce an efficient technique for computing Casimir energies and forces
between objects of arbitrarily complex 3D geometries. In contrast to other
recently developed methods, our technique easily handles non-spheroidal,
non-axisymmetric objects and objects with sharp corners. Using our new
technique, we obtain the first predictions of Casimir interactions in a number
of experimentally relevant geometries, including crossed cylinders and
tetrahedral nanoparticles.Comment: 4 pages, 4 figure
Association of FCGR2A and FCGR2A-FCGR3A haplotypes with susceptibility to giant cell arteritis
The Fc gamma receptors have been shown to play important roles in the initiation and regulation of many immunological and inflammatory processes and to amplify and refine the immune response to an infection. We have investigated the hypothesis that polymorphism within the FCGR genetic locus is associated with giant cell arteritis (GCA). Biallelic polymorphisms in FCGR2A, FCGR3A, FCGR3B and FCGR2B were examined for association with biopsy-proven GCA (n = 85) and healthy ethnically matched controls (n = 132) in a well-characterised cohort from Lugo, Spain. Haplotype frequencies and linkage disequilibrium (D') were estimated across the FCGR locus and a model-free analysis performed to determine association with GCA. There was a significant association between FCGR2A-131RR homozygosity (odds ratio (OR) 2.10, 95% confidence interval (CI) 1.12 to 3.77, P = 0.02, compared with all others) and carriage of FCGR3A-158F (OR 3.09, 95% CI 1.10 to 8.64, P = 0.03, compared with non-carriers) with susceptibility to GCA. FCGR haplotypes were examined to refine the extent of the association. The haplotype showing the strongest association with GCA susceptibility was the FCGR2A-FCGR3A 131R-158F haplotype (OR 2.84, P = 0.01 for homozygotes compared with all others). There was evidence of a multiplicative joint effect between homozygosity for FCGR2A-131R and HLA-DRB1*04 positivity, consistent with both of these two genetic factors contributing to the risk of disease. The risk of GCA in HLA-DRB1*04 positive individuals homozygous for the FCGR2A-131R allele is increased almost six-fold compared with those with other FCGR2A genotypes who are HLA-DRB1*04 negative. We have demonstrated that FCGR2A may contribute to the 'susceptibility' of GCA in this Spanish population. The increased association observed with a FCGR2A-FCGR3A haplotype suggests the presence of additional genetic polymorphisms in linkage disequilibrium with this haplotype that may contribute to disease susceptibility. These findings may ultimately provide new insights into disease pathogenesis
- …