1,268 research outputs found
The presence of programmed death 1 (PD-1)-positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer
Programmed death 1 (PD-1) is a co-inhibitory receptor in the CD28/CTL-4 family, and functions as a negative regulator of the immune system. Tumor-infiltrating lymphocytes (TIL) in many epithelial cancers express PD-1, suggesting that antitumor immunity may be modulated by the PD-1/PD-L1 signaling pathway, and promising results from two recent clinical trials with monoclonal antibodies targeting PD-1 or PD-L1 confirm the clinical relevance of this pathway in human cancer. To explore the role of PD-1+ TIL in human breast cancer, we performed immunohistochemistry studies on a tissue microarray encompassing 660 breast cancer cases with detailed clinical annotation and outcomes data. PD-1+ TIL were present in 104 (15.8%) of the 660 breast cancer cases. Their presence was associated with tumor size, grade, and lymph node status, and was differentially associated with the intrinsic subtypes of breast cancer. In univariate survival analyses, the presence of PD-1+ TIL was associated with a significantly worse overall survival (HR=2.736, p<0.001). In subset analyses, the presence of PD-1+ TIL was associated with significantly worse overall survival in the luminal B HER2− subtype (HR=2.678, p<0.001), the luminal B HER2+ subtype (HR=3.689, p<0.001), and the basal-like subtype (HR=3.140, p<0.001). This is the first study to demonstrate that the presence of PD-1+ TIL is associated with poor prognosis in human breast cancer, with important implications for the potential application of antibody therapies targeting the PD-1/PD-L1 signaling pathway in this diseas
Examination of the effect of acute levodopa administration on the loudness dependence of auditory evoked potentials (LDAEP) in humans
Rationale: The loudness dependence of the auditory evoked potential (LDAEP) is considered a noninvasive in vivo marker of central serotonergic functioning in humans. Nevertheless, results of genetic association studies point towards a modulation of this biomarker by dopaminergic neurotransmission. Objective: We examined the effect of dopaminergic modulation on the LDAEP using L-3,4-dihydroxyphenylalanine (levodopa)/benserazide (Madopar®) as a challenge agent in healthy volunteers. Methods: A double-blind placebo-controlled challenge design was chosen. Forty-two healthy participants (21 females and 21 males) underwent two LDAEP measurements, following a baseline LDAEP measurement either placebo or levodopa (levodopa 200mg/benserazide 50mg) were given orally. Changes in the amplitude and dipole source activity of the N1/P2 intensities (60, 70, 80, 90, and 100dB) were analyzed. Results: The participants of neither the levodopa nor the placebo group showed any significant LDAEP alterations compared to the baseline measurement. The test-retest reliability (Cronbachs Alpha) between baseline and intervention was 0.966 in the verum group and 0.759 in the placebo group, respectively. Conclusions: The administration of levodopa showed no effect on the LDAEP. These findings are in line with other trials using dopamine receptor agonist
PTP1B expression is an independent positive prognostic factor in human breast cancer
Protein tyrosine phosphatase 1B (PTP1B) is a non-transmembrane protein tyrosine phosphatase that has come into focus as a critical regulator of multiple signaling pathways. The role of PTP1B in breast cancer remains unclear with evidence suggesting that PTP1B can exert both tumor-suppressing and tumor-promoting effects. To better define the role of PTP1B in human breast cancer, and its relationship with HER2, we performed immunohistochemical studies on a large cohort of functionally annotated primary breast cancer specimens. 683 of 1,402 (49%) evaluable primary breast cancers are positive for PTP1B. There is no statistically significant association between PTP1B expression and age, tumor size, T stage, histologic grade, lymph node status, or histological subtype. Of note, there is no significant association between PTP1B expression and HER2 expression (PTP1B expression53.1% in HER2+ cancers vs. 47.5% in HER2− cancers, p=0.0985). However, PTP1B expression is significantly associated with estrogen receptor expression (PTP1B expression50.7% in ER+ cancers vs. 43.1% in ER− cancers, p=0.0137) and intrinsic molecular subtype (PTP1B expression53.9% in the luminal B HER2+ subtype and 37.9% in the basal-like subtype). Of note, multivariate analyses demonstrate that PTP1B is an independent predictor of improved survival in breast cancer (HR 0.779, p=0.006). Taken together, we demonstrate in the largest study to date that (1) PTP1B is commonly expressed in breast cancer, (2) there is no association or functional impact of PTP1B expression in HER2+ breast cancer, and (3) PTP1B expression in breast cancer is associated with significantly improved clinical outcome. Until additional studies are performed, caution should be exercised in using PTP1B inhibitors in human breast cance
Initial coupling and reaction progression of directly deposited biradical graphene nanoribbon monomers on iodine-passivated versus pristine Ag(111)
The development of widely applicable methods for the synthesis of C-C-bonded nanostructures on inert and insulating surfaces is a challenging yet rewarding milestone in the field of on-surface synthesis. This would enable studies of nearly unperturbed covalent nanostructures with unique electronic properties as graphene nanoribbons (GNR) and π-conjugated 2D polymers. The prevalent Ullmann-type couplings are almost exclusively carried out on metal surfaces to lower the temperature required for initial dehalogenation well below the desorption threshold. To overcome the necessity for the activation of monomers on the target surface, we employ a recently developed Radical Deposition Source (RaDeS) for the direct deposition of radicals onto inert surfaces for subsequent coupling by addition reactions. The radicals are generated en route by indirect deposition of halogenated precursors through a heated reactive tube, where the dehalogenation reaction proceeds. Here, we use the ditopic 6,11-diiodo-1,2,3,4-tetraphenyltriphenylene (DITTP) precursor that afforded chevron-like GNR on Au(111) via the usual two-staged reaction comprised of monomer-coupling into covalent polymers and subsequent formation of an extended GNR by intramolecular cyclodehydrogenation (CDH). As a model system for inert surfaces, we use Ag(111) passivated with a closed monolayer of chemisorbed iodine that behaves in an inert manner with respect to dehalogenation reactions and facilitates the progressive coupling of radicals into extended covalent structures. We deposit the DITTP-derived biradicals onto both iodine-passivated and pristine Ag(111) surfaces. While on the passivated surface, we directly observe the formation of covalent polymers, on pristine Ag(111) organometallic intermediates emerge instead. This has decisive consequences for the further progression of the reaction: heating the organometallic chain directly on Ag(111) results in complete desorption, whereas the covalent polymer on iodine-passivated Ag(111) can be transformed into the GNR. Yet, the respective CDH proceeds directly on Ag(111) after thermal desorption of the iodine passivation. Accordingly, future work is aimed at the further development of approaches for the complete synthesis of GNR on inert surfaces
Making Muscle Elastic: The Structural Basis of Myomesin Stretching
The muscle M-band protein myomesin comprises a 36-nm long filament made of repetitive immunoglobulin–helix modules that can stretch to 2.5-fold this length, demonstrating substantial molecular elasticity
Maternal corticotropin-releasing hormone is associated with LEP DNA methylation at birth and in childhood: an epigenome-wide study in Project Viva
BackgroundCorticotropin-releasing hormone (CRH) plays a central role in regulating the secretion of cortisol which controls a wide range of biological processes. Fetuses overexposed to cortisol have increased risks of disease in later life. DNA methylation may be the underlying association between prenatal cortisol exposure and health effects. We investigated associations between maternal CRH levels and epigenome-wide DNA methylation of cord blood in offsprings and evaluated whether these associations persisted into mid-childhood.MethodsWe investigated mother-child pairs enrolled in the prospective Project Viva pre-birth cohort. We measured DNA methylation in 257 umbilical cord blood samples using the HumanMethylation450 Bead Chip. We tested associations of maternal CRH concentration with cord blood cells DNA methylation, adjusting the model for maternal age at enrollment, education, maternal race/ethnicity, maternal smoking status, pre-pregnancy body mass index, parity, gestational age at delivery, child sex, and cell-type composition in cord blood. We further examined the persistence of associations between maternal CRH levels and DNA methylation in children's blood cells collected at mid-childhood (n = 239, age: 6.7-10.3 years) additionally adjusting for the children's age at blood drawn.ResultsMaternal CRH levels are associated with DNA methylation variability in cord blood cells at 96 individual CpG sites (False Discovery Rate <0.05). Among the 96 CpG sites, we identified 3 CpGs located near the LEP gene. Regional analyses confirmed the association between maternal CRH and DNA methylation near LEP. Moreover, higher maternal CRH levels were associated with higher blood-cell DNA methylation of the promoter region of LEP in mid-childhood (P < 0.05, β = 0.64, SE = 0.30).ConclusionIn our cohort, maternal CRH was associated with DNA methylation levels in newborns at multiple loci, notably in the LEP gene promoter. The association between maternal CRH and LEP DNA methylation levels persisted into mid-childhood
- …