3,989 research outputs found
Aharonov-Casher effect in a two dimensional hole gas with spin-orbit interaction
We study the quantum interference effects induced by the Aharonov-Casher
phase in a ring structure in a two-dimensional heavy hole (HH) system with
spin-orbit interaction realizable in narrow asymmetric quantum wells. The
influence of the spin-orbit interaction strength on the transport is
investigated analytically. These analytical results allow us to explain the
interference effects as a signature of the Aharonov-Casher Berry phases. Unlike
previous studies on the electron two-dimensional Rashba systems, we find that
the frequency of conductance modulations as a function of the spin-orbit
strength is not constant but increases for larger spin-orbit splittings. In the
limit of thin channel rings (width smaller than Fermi wavelength), we find that
the spin-orbit splitting can be greatly increased due to quantization in the
radial direction. We also study the influence of magnetic field considering
both limits of small and large Zeeman splittings.Comment: 6 pages, 4 figure
X-ray emission from the double-binary OB-star system QZ Car (HD 93206)
X-ray observations of the double-binary OB-star system QZ Car (HD 93206)
obtained with the Chandra X-ray Observatory over a period of roughly 2 years
are presented. The orbit of systems A (O9.7 I+b2 v, PA = 21 d) and B (O8 III+o9
v, PB = 6 d) are reasonably well sampled by the observations, allowing the
origin of the X-ray emission to be examined in detail. The X-ray spectra can be
well fitted by an attenuated three temperature thermal plasma model,
characterised by cool, moderate, and hot plasma components at kT ~ 0.2, 0.7,
and 2 keV, respectively, and a circumstellar absorption of ~ 0.2 x 10^22 cm-2.
Although the hot plasma component could be indicating the presence of wind-wind
collision shocks in the system, the model fluxes calculated from spectral fits,
with an average value of ~ 7 x 10^-13 erg s-1 cm-2, do not show a clear
correlation with the orbits of the two constituent binaries. A semi-analytical
model of QZ Car reveals that a stable momentum balance may not be established
in either system A or B. Yet, despite this, system B is expected to produce an
observed X-ray flux well in excess of the observations. If one considers the
wind of the O8 III star to be disrupted by mass transfer the model and
observations are in far better agreement, which lends support to the previous
suggestion of mass-transfer in the O8 III + o9 v binary. We conclude that the
X-ray emission from QZ Car can be reasonably well accounted for by a
combination of contributions mainly from the single stars and the mutual
wind-wind collision between systems A and B.Comment: 11 pages, 7 figures. Accepted for the ApJS Special Issue on the
Chandra Carina Complex Project (CCCP), scheduled for publication in May 2011.
All 16 CCCP Special Issue papers are available at
http://cochise.astro.psu.edu/Carina_public/special_issue.html through 2011 at
leas
Evidence for the band broadening across the ferromagnetic transition in CrNbSe
The electronic structure of CrNbSe is studied via optical
spectroscopy. We observe two low-energy interband transitions in the
paramagnetic phase, which split into four peaks as the compound enters the
ferromagnetic state. The band structure calculation indicates the four peaks
are interband transitions to the spin up Cr e states. We show that the peak
splitting below the Curie temperature is \emph{not} due to the exchange
splitting of spin up and down bands, but directly reflects a band broadening
effect in Cr-derived states upon the spontaneous ferromagnetic ordering.Comment: 6 pages, 5 figures, to be published in Phys. Rev.
The physical characteristics of the gas in the disk of Centaurus A using the Herschel Space Observatory
We search for variations in the disk of Centaurus A of the emission from
atomic fine structure lines using Herschel PACS and SPIRE spectroscopy. In
particular we observe the [C II](158 m), [N II](122 and 205 m), [O
I](63 and 145 m) and [O III](88 m) lines, which all play an important
role in cooling the gas in photo-ionized and photodissociation regions. We
determine that the ([C II]+[O I])/ line ratio, a proxy for the
heating efficiency of the gas, shows no significant radial trend across the
observed region, in contrast to observations of other nearby galaxies. We
determine that 10 - 20% of the observed [C II] emission originates in ionized
gas. Comparison between our observations and a PDR model shows that the
strength of the far-ultraviolet radiation field, , varies between
and and the hydrogen nucleus density varies between
and cm, with no significant radial trend in
either property. In the context of the emission line properties of the
grand-design spiral galaxy M51 and the elliptical galaxy NGC 4125, the gas in
Cen A appears more characteristic of that in typical disk galaxies rather than
elliptical galaxies.Comment: Accepted for publication in the Astrophysical Journal. 22 pages, 10
figures, 5 table
Photoacoustic imaging of intracardiac medical devices using internal illumination of carbon nanotube / PDMS composite coatings
Accurate localisation of medical devices is of crucial importance for a wide range of ultrasound-guided interventions. In this study, we investigated visualisation of medical devices by photoacoustic excitation of optically absorbing coatings. Photoacoustic excitation light was provided through optical fibres positioned within a cardiac needle and a steerable-tip catheter. Using a swine heart model, photoacoustic and B-mode ultrasound images were received with a clinical ultrasound scanner in conjunction with a transoesophageal imaging probe. In the photoacoustic images, prominent signals were obtained from the coatings. This study demonstrated that photoacoustic imaging could play a useful role with medical device imaging
Herschel and JCMT observations of the early-type dwarf galaxy NGC 205
We present Herschel dust continuum, James Clerk Maxwell Telescope CO(3-2)
observations and a search for [CII] 158 micron and [OI] 63 micron spectral line
emission for the brightest early-type dwarf satellite of Andromeda, NGC 205.
While direct gas measurements (Mgas ~ 1.5e+6 Msun, HI + CO(1-0)) have proven to
be inconsistent with theoretical predictions of the current gas reservoir in
NGC 205 (> 1e+7 Msun), we revise the missing interstellar medium mass problem
based on new gas mass estimates (CO(3-2), [CII], [OI]) and indirect
measurements of the interstellar medium content through dust continuum
emission. Based on Herschel observations, covering a wide wavelength range from
70 to 500 micron, we are able to probe the entire dust content in NGC 205
(Mdust ~ 1.1-1.8e+4 Msun at Tdust ~ 18-22 K) and rule out the presence of a
massive cold dust component (Mdust ~ 5e+5 Msun, Tdust ~ 12 K), which was
suggested based on millimeter observations from the inner 18.4 arcsec. Assuming
a reasonable gas-to-dust ratio of ~ 400, the dust mass in NGC 205 translates
into a gas mass Mgas ~ 4-7e+6 Msun. The non-detection of [OI] and the low
L_[CII]-to-L_CO(1-0) line intensity ratio (~ 1850) imply that the molecular gas
phase is well traced by CO molecules in NGC 205. We estimate an atomic gas mass
of 1.5e+4 Msun associated with the [CII] emitting PDR regions in NGC 205. From
the partial CO(3-2) map of the northern region in NGC 205, we derive a
molecular gas mass of M_H2 ~ 1.3e+5 Msun. [abridged]Comment: 16 pages, 7 figures, accepted for publication in MNRA
Cold Dust but Warm Gas in the Unusual Elliptical Galaxy NGC 4125
Data from the Herschel Space Observatory have revealed an unusual elliptical galaxy, NGC 4125, which has strong and extended submillimeter emission from cold dust but only very strict upper limits to its CO and Hi emission. Depending on the dust emissivity, the total dust mass is 2-5 x 10(6) M-circle dot. While the neutral gas-to-dust mass ratio is extremely low (= 10(4) K faster than the dust is evaporated. If galaxies like NGC 4125, where the far-infrared emission does not trace neutral gas in the usual manner, are common at higher redshift, this could have significant implications for our understanding of high redshift galaxies and galaxy evolution.Canadian Space AgencyNatural Sciences and Engineering Research Council of CanadaAgenzia Spaziale Italiana (ASI) I/005/11/0BMVIT (Austria)ESA-PRODEX (Belgium)CEA/CNES (France)DLR (Germany)ASI/INAF (Italy)CICYT/MCYT (Spain)CSA (Canada)NAOC (China)CEA, (France)CNES (France)CNRS (France)ASI (Italy)MCINN (Spain)SNSB (Sweden)STFC (UK)NASA (USA)National Aeronautics and Space AdministrationAstronom
Testing hypotheses about the harm that capitalism causes to the mind and brain: a theoretical framework for neuroscience research
In this paper, we will attempt to outline the key ideas of a theoretical framework for neuroscience research that reflects critically on the neoliberal capitalist context. We argue that neuroscience can and should illuminate the effects of neoliberal capitalism on the brains and minds of the population living under such socioeconomic systems. Firstly, we review the available empirical research indicating that the socio-economic environment is harmful to minds and brains. We, then, describe the effects of the capitalist context on neuroscience itself by presenting how it has been influenced historically. In order to set out a theoretical framework that can generate neuroscientific hypotheses with regard to the effects of the capitalist context on brains and minds, we suggest a categorization of the effects, namely deprivation, isolation and intersectional effects. We also argue in favor of a neurodiversity perspective [as opposed to the dominant model of conceptualizing neural (mal-)functioning] and for a perspective that takes into account brain plasticity and potential for change and adaptation. Lastly, we discuss the specific needs for future research as well as a frame for post-capitalist research
- …