We study the quantum interference effects induced by the Aharonov-Casher
phase in a ring structure in a two-dimensional heavy hole (HH) system with
spin-orbit interaction realizable in narrow asymmetric quantum wells. The
influence of the spin-orbit interaction strength on the transport is
investigated analytically. These analytical results allow us to explain the
interference effects as a signature of the Aharonov-Casher Berry phases. Unlike
previous studies on the electron two-dimensional Rashba systems, we find that
the frequency of conductance modulations as a function of the spin-orbit
strength is not constant but increases for larger spin-orbit splittings. In the
limit of thin channel rings (width smaller than Fermi wavelength), we find that
the spin-orbit splitting can be greatly increased due to quantization in the
radial direction. We also study the influence of magnetic field considering
both limits of small and large Zeeman splittings.Comment: 6 pages, 4 figure