230 research outputs found

    Viscoelastic properties of green wood across the grain measured by harmonic tests in the range of 0\degree C to 95\degree C. Hardwood vs. softwood and normal wood vs. reaction wood

    Full text link
    The viscoelastic properties of wood have been investigated with a dynamic mechanical analyser (DMA) specifically conceived for wooden materials, the WAVET device (environmental vibration analyser for wood). Measurements were carried out on four wood species in the temperature range of 0\degree C to 100\degree C at frequencies varying between 5 mHz and 10 Hz. Wood samples were tested in water-saturated conditions, in radial and tangential directions. As expected, the radial direction always revealed a higher storage modulus than the tangential direction. Great differences were also observed in the loss factor. The tan\delta peak and the internal friction are higher in tangential direction than in radial direction. This behaviour is attributed to the fact that anatomical elements act depending on the direction. Viscoelastic behaviour of reaction wood differs from that of normal or opposite wood. Compression wood of spruce, which has higher lignin content, is denser and stiffer in transverse directions than normal wood, and has lower softening temperature (Tg). In tension wood, the G-layer is weakly attached to the rest of the wall layers. This may explain why the storage modulus and the softening temperature of tension wood are lower than those for the opposite wood. In this work, we also point out that the time-temperature equivalence fits only around the transition region, i.e. between Tg and Tg + 30\degree C. Apart from these regions, the wood response combines the effect of all constitutive polymers, so that the equivalence is not valid anymore

    Many ways to make darker flies: Intra-and interspecific variation in Drosophila body pigmentation components

    Get PDF
    Body pigmentation is an evolutionarily diversified and ecologically relevant trait with substantial variation within and between species, and important roles in animal survival and reproduction. Insect pigmentation, in particular, provides some of the most compelling examples of adaptive evolution, including its ecological significance and genetic bases. Pigmentation includes multiple aspects of color and color pattern that may vary more or less independently, and can be under different selective pressures. We decompose Drosophila thorax and abdominal pigmentation, a valuable eco-evo- devo model, into distinct measurable traits related to color and color pattern. We investigate intra-and interspecific variation for those traits and assess its different sources. For each body part, we measured overall darkness, as well as four other pigmentation properties distinguishing between background color and color of the darker pattern elements that decorate each body part. By focusing on two standard D. melanogaster laboratory populations, we show that pigmentation components vary and covary in distinct manners depending on sex, genetic background, and temperature during development. Studying three natural populations of D. melanogaster along a latitudinal cline and five other Drosophila species, we then show t hat evolution of lighter or darker bodies can be achieved by changing distinct component traits. Our results paint a much more complex picture of body pigmentation variation than previous studies could uncover, including patterns of sexual dimorphism, thermal plasticity, and interspecific diversity. These findings underscore the value of detailed quantitative phenotyping and analysis of different sources of variation for a better understanding of phenotypic variation and diversification, and the ecological pressures and genetic mechanisms underlying them.info:eu-repo/semantics/publishedVersio

    INTERLAYER COUPLING AND THE METAL-INSULATOR TRANSITION IN Pr-SUBSTITUTED Bi(2)Sr(2)CaCu(2)O(8+y)

    Full text link
    Substitution of rare-earth ions for Ca in Bi2Sr2CaCu2O8+y is known to cause a metal-insulator transition. Using resonant photoemission we study how this chemical substitution affects the electronic structure of the material. For the partial Cu-density of states at E_F and in the region of the valence band we observe no significant difference between a pure superconducting sample and an insulating sample with 60% Pr for Ca. This suggests that the states responsible for superconductivity are predomi- nately O-states. The partial Pr-4f density of states was extracted utilizing the Super- Koster-Kronig Pr 4d-4f resonance. It consists of a single peak at 1.36eV binding energy. The peak shows a strongly assymetric Doniach-Sunjic line- shape indicating the presence of a continuum of electronic states with sharp cut off at E_F even in this insulating sample. This finding excludes a bandgap in the insulating sample and supports the existance of a mobility gap caused by spatial localization of the carriers. The presence of such carriers at the Pr-site, between the CuO_2 planes shows that the electronic structure is not purely 2-dimensional but that there is a finite interlayer coupling. The resonance enhancement of the photoemission cross section, at the Pr-4d threshold, was studied for the Pr-4f and for Cu-states. Both the Pr-4f and the Cu-states show a Fano-like resonance. This resonance of Cu-states with Pr-states is another indication of coupling between the the Pr-states and those in the CuO_2 plane. Because of the statistical distribution of the Pr-ions this coupling leads to a non-periodic potential for the states in the CuO_2 plane which can lead to localization and thus to the observed metal-insulator transition.Comment: Gziped uuencoded postscript file including 7 figures Scheduled for publication in Physical Review B, May 1, 1995

    Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes

    Get PDF
    Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change

    Overcoming establishment thresholds for peat mosses in human-made bog pools

    Get PDF
    Globally, peatlands have been affected by drainage and peat extraction, with adverse effects on their functioning and services. To restore peat‐forming vegetation, drained bogs are being rewetted on a large scale. Although this practice results in higher groundwater levels, unfortunately it often creates deep lakes in parts where peat was extracted to greater depths than the surroundings. Revegetation of these deeper waters by peat mosses appears to be challenging due to strong abiotic feedbacks that keep these systems in an undesired bare state. In this study, we theoretically explore if a floating peat mat and an open human‐made bog lake can be considered two alternative stable states using a simple model, and experimentally test in the field whether stable states are present, and whether a state shift can be accomplished using floating biodegradable structures that mimic buoyant peat. We transplanted two peat moss species into these structures (pioneer sp. Sphagnum cuspidatum and later‐successional sp. S. palustre) with and without additional organic substrate. Our model suggests that these open human‐made bog lakes and floating peat mats can indeed be regarded as alternative stable states. Natural recovery by spontaneous peat moss growth, i.e., a state shift from open water to floating mats, is only possible when the water table is sufficiently shallow to avoid light limitation (<0.29 m at our site). Our experiment revealed that alternative stable states are present and that the floating structures facilitated the growth of pioneer S. cuspidatum and vascular plants. Organic substrate addition particularly facilitated vascular plant growth, which correlated to higher moss height. The structures remained too wet for the late‐successional species S. palustre. We conclude that open water and floating peat mats in human‐made bog lakes can be considered two alternative stable states, and that temporary floating establishment structures can induce a state shift from the open water state to peat‐forming vegetation state. These findings imply that for successful restoration, there is a clear water depth threshold to enable peat moss growth and there is no need for addition of large amounts of donor‐peat substrate. Correct species selection for restoration is crucial for success

    Longitudinal analysis of a long-Term conservation agriculture experiment in Malawi and lessons for future experimental design

    Get PDF
    Resilient cropping systems are required to achieve food security in the presence of climate change, and so several long-Term conservation agriculture (CA) trials have been established in southern Africa-one of them at the Chitedze Agriculture Research Station in Malawi in 2007. The present study focused on a longitudinal analysis of 10 years of data from the trial to better understand the joint effects of variations between the seasons and particular contrasts among treatments on yield of maize. Of further interest was the variability of treatment responses in time and space and the implications for design of future trials with adequate statistical power. The analysis shows treatment differences of the mean effect which vary according to cropping season. There was a strong treatment effect between rotational treatments and other treatments and a weak effect between intercropping and monocropping. There was no evidence for an overall advantage of systems where residues are retained (in combination with direct seeding or planting basins) over conventional management with respect to maize yield. A season effect was evident although the strong benefit of rotation in El Niño season was also reduced, highlighting the strong interaction between treatment and climatic conditions. The power analysis shows that treatment effects of practically significant magnitude may be unlikely to be detected with just four replicates, as at Chitedze, under either a simple randomised control trial or a factorial experiment. Given logistical and financial constraints, it is important to design trials with fewer treatments but more replicates to gain enough statistical power and to pay attention to the selection of treatments to given an informative outcome

    Speaker Sex Perception from Spontaneous and Volitional Nonverbal Vocalizations.

    Get PDF
    In two experiments, we explore how speaker sex recognition is affected by vocal flexibility, introduced by volitional and spontaneous vocalizations. In Experiment 1, participants judged speaker sex from two spontaneous vocalizations, laughter and crying, and volitionally produced vowels. Striking effects of speaker sex emerged: For male vocalizations, listeners' performance was significantly impaired for spontaneous vocalizations (laughter and crying) compared to a volitional baseline (repeated vowels), a pattern that was also reflected in longer reaction times for spontaneous vocalizations. Further, performance was less accurate for laughter than crying. For female vocalizations, a different pattern emerged. In Experiment 2, we largely replicated the findings of Experiment 1 using spontaneous laughter, volitional laughter and (volitional) vowels: here, performance for male vocalizations was impaired for spontaneous laughter compared to both volitional laughter and vowels, providing further evidence that differences in volitional control over vocal production may modulate our ability to accurately perceive speaker sex from vocal signals. For both experiments, acoustic analyses showed relationships between stimulus fundamental frequency (F0) and the participants' responses. The higher the F0 of a vocal signal, the more likely listeners were to perceive a vocalization as being produced by a female speaker, an effect that was more pronounced for vocalizations produced by males. We discuss the results in terms of the availability of salient acoustic cues across different vocalizations
    corecore