265 research outputs found

    Delusions, Demographics, and Denial: Higher Education\u27s Future in Kentucky and Elsewhere

    Get PDF
    It doesn’t take a genius to see that everything is not quite right in higher education these days. The feeling that things can’t go on as they have in the past is slowing sinking in for those associated with our colleges and universities. A day of reckoning is coming. As most college students can attest, the cost of attending college continues to escalate exponentially while the return on that investment is increasingly suspect. The average student loan debt incurred per student is around $38,000, while the average annual salary a newly minted college graduate in Kentucky can expect to earn is roughly the same amount. Let that sink in for a moment

    Structural stability of Fe5Si3 and Ni2Si studied by high-pressure x-ray diffraction and ab initio total-energy calculations

    Full text link
    We performed high-pressure angle dispersive x-ray diffraction measurements on Fe5Si3 and Ni2Si up to 75 GPa. Both materials were synthesized in bulk quantities via a solid-state reaction. In the pressure range covered by the experiments, no evidence of the occurrence of phase transitions was observed. On top of that, Fe5Si3 was found to compress isotropically, whereas an anisotropic compression was observed in Ni2Si. The linear incompressibility of Ni2Si along the c-axis is similar in magnitude to the linear incompressibility of diamond. This fact is related to the higher valence-electron charge density of Ni2Si along the c-axis. The observed anisotropic compression of Ni2Si is also related to the layered structure of Ni2Si where hexagonal layers of Ni2+ cations alternate with graphite-like layers formed by (NiSi)2- entities. The experimental results are supported by ab initio total-energy calculations carried out using density functional theory and the pseudopotential method. For Fe5Si3, the calculations also predicted a phase transition at 283 GPa from the hexagonal P63/mcm phase to the cubic structure adopted by Fe and Si in the garnet Fe5Si3O12. The room-temperature equations of state for Fe5Si3 and Ni2Si are also reported and a possible correlation between the bulk modulus of iron silicides and the coordination number of their minority element is discussed. Finally, we report novel descriptions of these structures, in particular of the predicted high-pressure phase of Fe5Si3 (the cation subarray in the garnet Fe5Si3O12), which can be derived from spinel Fe2SiO4 (Fe6Si3O12).Comment: 44 pages, 13 figures, 3 Table

    A new polymorphic material? Structural degeneracy of ZrMn_2

    Full text link
    Based on density functional calculations, we propose that ZrMn_2 is a polymorphic material. We predict that at low temperatures the cubic C15, and the hexagonal C14 and C36 structures of the Laves phase compound ZrMn_2 are nearly equally stable within 0.3 kJmol^{-1} or 30 K. This degeneracy occurs when the Mn atoms magnetize spontaneously in a ferromagnetic arrangement forming the states of lowest energy. From the temperature dependent free energies at T approx 160K we predict a transition from the most stable C15 to the C14 structure, which is the experimentally observed structure at elevated temperatures.Comment: 4 pages, 3 figure

    Crystal structure of Cu-Sn-In alloys around the {\eta} phase field studied by neutron diffraction

    Get PDF
    The study of the Cu-Sn-In ternary system has become of great importance in recent years, due to new environmental regulations forcing to eliminate the use of Pb in bonding technologies for electronic devices. A key relevant issue concerns the intermetallic phases which grow in the bonding zone and are determining in their quality and performance. In this work, we focus in the {\eta}-phase (Cu2In or Cu6Sn5) that exists in both end binaries and as a ternary phase. We present a neutron diffraction study of the constitution and crystallography of a series of alloys around the 60 at.% Cu composition, and with In contents ranging from 0 to 25 at.%, quenched from 300\degreeC. The alloys were characterized by scanning electron microscopy, probe microanalysis and high-resolution neutron diffraction. The Rietveld refinement of neutron diffraction data allowed to improve the currently available model for site occupancies in the hexagonal {\eta}-phase in the binary Cu-Sn as well as in ternary alloys. For the first time, structural data is reported in the ternary Cu-Sn-In {\eta}-phase as a function of composition, information that is of fundamental technological importance as well as valuable input data for ongoing modelisations of the ternary phase diagram.Comment: 8 pages, 10 figure

    Complex-Temperature Properties of the Ising Model on 2D Heteropolygonal Lattices

    Full text link
    Using exact results, we determine the complex-temperature phase diagrams of the 2D Ising model on three regular heteropolygonal lattices, (3⋅6⋅3⋅6)(3 \cdot 6 \cdot 3 \cdot 6) (kagom\'{e}), (3⋅122)(3 \cdot 12^2), and (4⋅82)(4 \cdot 8^2) (bathroom tile), where the notation denotes the regular nn-sided polygons adjacent to each vertex. We also work out the exact complex-temperature singularities of the spontaneous magnetisation. A comparison with the properties on the square, triangular, and hexagonal lattices is given. In particular, we find the first case where, even for isotropic spin-spin exchange couplings, the nontrivial non-analyticities of the free energy of the Ising model lie in a two-dimensional, rather than one-dimensional, algebraic variety in the z=e−2Kz=e^{-2K} plane.Comment: 31 pages, latex, postscript figure

    Unconventional magnetism in all-carbon nanofoam

    Get PDF
    We report production of nanostructured carbon foam by a high-repetition-rate, high-power laser ablation of glassy carbon in Ar atmosphere. A combination of characterization techniques revealed that the system contains both sp2 and sp3 bonded carbon atoms. The material is a novel form of carbon in which graphite-like sheets fill space at very low density due to strong hyperbolic curvature, as proposed for ?schwarzite?. The foam exhibits ferromagnetic-like behaviour up to 90 K, with a narrow hysteresis curve and a high saturation magnetization. Such magnetic properties are very unusual for a carbon allotrope. Detailed analysis excludes impurities as the origin of the magnetic signal. We postulate that localized unpaired spins occur because of topological and bonding defects associated with the sheet curvature, and that these spins are stabilized due to the steric protection offered by the convoluted sheets.Comment: 14 pages, including 2 tables and 7 figs. Submitted to Phys Rev B 10 September 200

    Lower Bounds and Series for the Ground State Entropy of the Potts Antiferromagnet on Archimedean Lattices and their Duals

    Full text link
    We prove a general rigorous lower bound for W(Λ,q)=exp⁡(S0(Λ,q)/kB)W(\Lambda,q)=\exp(S_0(\Lambda,q)/k_B), the exponent of the ground state entropy of the qq-state Potts antiferromagnet, on an arbitrary Archimedean lattice Λ\Lambda. We calculate large-qq series expansions for the exact Wr(Λ,q)=q−1W(Λ,q)W_r(\Lambda,q)=q^{-1}W(\Lambda,q) and compare these with our lower bounds on this function on the various Archimedean lattices. It is shown that the lower bounds coincide with a number of terms in the large-qq expansions and hence serve not just as bounds but also as very good approximations to the respective exact functions Wr(Λ,q)W_r(\Lambda,q) for large qq on the various lattices Λ\Lambda. Plots of Wr(Λ,q)W_r(\Lambda,q) are given, and the general dependence on lattice coordination number is noted. Lower bounds and series are also presented for the duals of Archimedean lattices. As part of the study, the chromatic number is determined for all Archimedean lattices and their duals. Finally, we report calculations of chromatic zeros for several lattices; these provide further support for our earlier conjecture that a sufficient condition for Wr(Λ,q)W_r(\Lambda,q) to be analytic at 1/q=01/q=0 is that Λ\Lambda is a regular lattice.Comment: 39 pages, Revtex, 9 encapsulated postscript figures, to appear in Phys. Rev.

    Anatomy of a pressure-induced, ferromagnetic-to-paramagnetic transition in pyrrhotite: Implications for the formation pressure of diamonds

    Get PDF
    Meteorites and diamonds encounter high pressures during their formation or subsequent evolution. These materials commonly contain magnetic inclusions of pyrrhotite. Because magnetic properties are sensitive to strain, pyrrhotite can potentially record the shock or formation pressures of its host. Moreover, pyrrhotite undergoes a pressure-induced phase transition between 1.6 and 6.2 GPa, but the magnetic signature of this transition is poorly known. Here we report room temperature magnetic measurements on multidomain and single-domain pyrrhotite under nonhydrostatic pressure. Magnetic remanence in single-domain pyrrhotite is largely insensitive to pressure until 2 GPa, whereas the remanence of multidomain pyrrhotite increases 50\% over that of initial conditions by 2 GPa, and then decreases until only 33\% of the original remanence remains by 4.5 GPa. In contrast, magnetic coercivity increases with increasing pressure to 4.5 GPa. Below ∌1.5 GPa, multidomain pyrrhotite obeys NĂ©el theory with a positive correlation between coercivity and remanence; above ∌1.5 GPa, it behaves single domain-like yet distinctly different from uncompressed single-domain pyrrhotite. The ratio of magnetic coercivity and remanence follows a logarithmic law with respect to pressure, which can potentially be used as a geobarometer. Owing to the greater thermal expansion of pyrrhotite with respect to diamond, pyrrhotite inclusions in diamonds experience a confining pressure at Earth’s surface. Applying our experimentally derived magnetic geobarometer to pyrrhotite-bearing diamonds from Botswana and the Central African Republic suggests the pressures of the pyrrhotite inclusions in the diamonds range from 1.3 to 2.1 GPa. These overpressures constrain the mantle source pressures from 5.4 to 9.5 GPa, depending on which bulk modulus and thermal expansion coefficients of the two phases are used

    New polymorph of InVO4: A high-pressure structure with six-coordinated vanadium

    Full text link
    This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Inorganic Chemestry, copyright © American Chemical Society after peer review. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/ic402043xA new wolframite-type polymorph of InVO4 is identified under compression near 7 GPa by in situ high-pressure (HP) X-ray diffraction (XRD) and Raman spectroscopic investigations on the stable orthorhombic InVO4. The structural transition is accompanied by a large volume collapse (Delta V/V = -14%) and a drastic increase in bulk modulus (from 69 to 168 GPa). Both techniques also show the existence of a third phase coexisting with the low- and high-pressure phases in a limited pressure range close to the transition pressure. XRD studies revealed a highly anisotropic compression in orthorhombic InVO4. In addition, the compressibility becomes nonlinear in the HP polymorph. The volume collapse in the lattice is related to an increase of the polyhedral coordination around the vanadium atoms. The transformation is not fully reversible. The drastic change in the polyhedral arrangement observed at the transition is indicative of a reconstructive phase transformation. The HP phase here found is the only modification of InVO4 reported to date with 6-fold coordinated vanadium atoms. Finally, Raman frequencies and pressure coefficients in the low- and high-pressure phases of InVO4 are reported.This research supported by the Spanish government MINECO under Grant Nos. MAT2010-21270-C04-01/04 and CSD2007-00045. O.G. acknowledges support from Vicerrectorado de Investigacion y Desarrollo of UPV (Grant No. UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11). S.N.A. acknowledges support provided by Universitat de Valencia during his visit to it. B.G.-D. acknowledges the financial support from MINECO through the FPI program.Errandonea, D.; Gomis Hilario, O.; GarcĂ­a-Domene, B.; Pellicer Porres, J.; Katari, V.; Achary, SN.; Tyagi, AK.... (2013). New polymorph of InVO4: A high-pressure structure with six-coordinated vanadium. Inorganic Chemistry. 52(21):12790-12798. https://doi.org/10.1021/ic402043xS1279012798522

    Determinants of cation transport selectivity: Equilibrium binding and transport kinetics

    Get PDF
    The crystal structures of channels and transporters reveal the chemical nature of ion-binding sites and, thereby, constrain mechanistic models for their transport processes. However, these structures, in and of themselves, do not reveal equilibrium selectivity or transport preferences, which can be discerned only from various functional assays. In this Review, I explore the relationship between cation transport protein structures, equilibrium binding measurements, and ion transport selectivity. The primary focus is on K(+)-selective channels and nonselective cation channels because they have been extensively studied both functionally and structurally, but the principles discussed are relevant to other transport proteins and molecules
    • 

    corecore