105 research outputs found

    Nonthermal pathways to ultrafast control in quantum materials

    Get PDF
    We review recent progress in utilizing ultrafast light-matter interaction to control the macroscopic properties of quantum materials. Particular emphasis is placed on photoinduced phenomena that do not result from ultrafast heating effects but rather emerge from microscopic processes that are inherently nonthermal in nature. Many of these processes can be described as transient modifications to the free-energy landscape resulting from the redistribution of quasiparticle populations, the dynamical modification of coupling strengths and the resonant driving of the crystal lattice. Other pathways result from the coherent dressing of a material's quantum states by the light field. We discuss a selection of recently discovered effects leveraging these mechanisms, as well as the technological advances that led to their discovery. A road map for how the field can harness these nonthermal pathways to create new functionalities is presented.Comment: 36 pages, 12 figures; all authors contributed equally to this wor

    Evidence of an improper displacive phase transition in Cd2_2Re2_2O7_7 via time-resolved coherent phonon spectroscopy

    Get PDF
    We have used a combination of ultrafast coherent phonon spectroscopy, ultrafast thermometry, and time-dependent Landau theory to study the inversion symmetry breaking phase transition at Tc=200T_c = 200 K in the strongly spin-orbit coupled correlated metal Cd2_2Re2_2O7_7. We establish that the structural distortion at TcT_c is a secondary effect through the absence of any softening of its associated phonon mode, which supports a purely electronically driven mechanism. However, the phonon lifetime exhibits an anomalously strong temperature dependence that decreases linearly to zero near TcT_c. We show that this behavior naturally explains the spurious appearance of phonon softening in previous Raman spectroscopy experiments and should be a prevalent feature of correlated electron systems with linearly coupled order parameters.Comment: 5 pages main text, 5 figures, 7 pages supplementary informatio

    Binary Models for Marginal Independence

    Full text link
    Log-linear models are a classical tool for the analysis of contingency tables. In particular, the subclass of graphical log-linear models provides a general framework for modelling conditional independences. However, with the exception of special structures, marginal independence hypotheses cannot be accommodated by these traditional models. Focusing on binary variables, we present a model class that provides a framework for modelling marginal independences in contingency tables. The approach taken is graphical and draws on analogies to multivariate Gaussian models for marginal independence. For the graphical model representation we use bi-directed graphs, which are in the tradition of path diagrams. We show how the models can be parameterized in a simple fashion, and how maximum likelihood estimation can be performed using a version of the Iterated Conditional Fitting algorithm. Finally we consider combining these models with symmetry restrictions

    Cavity electrodynamics of van der Waals heterostructures

    Full text link
    Van der Waals (vdW) heterostructures host many-body quantum phenomena that can be tuned in situ using electrostatic gates. These gates are often microstructured graphite flakes that naturally form plasmonic cavities, confining light in discrete standing waves of current density due to their finite size. Their resonances typically lie in the GHz - THz range, corresponding to the same μ\mueV - meV energy scale characteristic of many quantum effects in the materials they electrically control. This raises the possibility that built-in cavity modes could be relevant for shaping the low-energy physics of vdW heterostructures. However, capturing this light-matter interaction remains elusive as devices are significantly smaller than the diffraction limit at these wavelengths, hindering far-field spectroscopic tools. Here, we report on the sub-wavelength cavity electrodynamics of graphene embedded in a vdW heterostructure plasmonic microcavity. Using on-chip THz spectroscopy, we observed spectral weight transfer and an avoided crossing between the graphite cavity and graphene plasmon modes as the graphene carrier density was tuned, revealing their ultrastrong coupling. Our findings show that intrinsic cavity modes of metallic gates can sense and manipulate the low-energy electrodynamics of vdW heterostructures. This opens a pathway for deeper understanding of emergent phases in these materials and new functionality through cavity control

    Moiré nematic phase in twisted double bilayer graphene

    Get PDF
    Graphene moiré superlattices display electronic flat bands. At integer fillings of these flat bands, energy gaps due to strong electron–electron interactions are generally observed. However, the presence of other correlation-driven phases in twisted graphitic systems at non-integer fillings is unclear. Here, we report the existence of three-fold rotational (C3) symmetry breaking in twisted double bilayer graphene. Using spectroscopic imaging over large and uniform areas to characterize the direction and degree of C3 symmetry breaking, we find it to be prominent only at energies corresponding to the flat bands and nearly absent in the remote bands. We demonstrate that the magnitude of the rotational symmetry breaking does not depend on the degree of the heterostrain or the displacement field, being instead a manifestation of an interaction-driven electronic nematic phase. We show that the nematic phase is a primary order that arises from the normal metal state over a wide range of doping away from charge neutrality. Our modelling suggests that the nematic instability is not associated with the local scale of the graphene lattice, but is an emergent phenomenon at the scale of the moiré lattice.S.T. and A.N.P. acknowledge funding from Programmable Quantum Materials, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award no. DE-SC0019443. STM equipment support (A.N.P.) and 2D sample synthesis (Y.S.) were provided by the Air Force Office of Scientific Research via grant no. FA9550-16-1-0601. C.R.-V. acknowledges funding from the European Union Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement no. 844271. A.R. acknowledges funding by the European Research Council (ERC-2015-AdG-694097), Grupos Consolidados (IT1249-19) and the Flatiron Institute, a division of the Simons Foundation. L.K., D.M.K. and A.R. acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy-Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1-390534769 and Advanced Imaging of Matter (AIM) EXC 2056−390715994 and funding by the Deutsche Forschungsgemeinschaft (DFG) under RTG 1995, within the Priority Program SPP 2244 ‘2DMP’ and GRK 2247. A.R. acknowledges support by the Max Planck Institute-New York City Center for Non-Equilibrium Quantum Phenomena. H.O. is supported by the NSF MRSEC programme grant no. DMR-1420634. Tight-binding and fRG simulations were performed with computing resources granted by RWTH Aachen University under projects rwth0496 and rwth0589. R.S. and M.S.S. acknowledge support from the National Science Foundation under grant no. DMR-2002850. R.M.F. was supported by the DOE-BES under award no. DE-SC0020045. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan (grant no. JPMXP0112101001), JSPS KAKENHI (grant no. JP20H00354) and the CREST (grant no. JPMJCR15F3) JST.Peer reviewe

    Cooling quasiparticles in A(3)C(60) fullerides by excitonic mid-infrared absorption

    Get PDF
    Long after its discovery, superconductivity in alkali fullerides A(3)C(60) still challenges conventional wisdom. The freshest inroad in such ever-surprising physics is the behaviour under intense infrared excitation. Signatures attributable to a transient superconducting state extending up to temperatures ten times higher than the equilibrium T-c similar to 20 K have been discovered in K3C60 after ultra-short pulsed infrared irradiation-an effect which still appears as remarkable as mysterious. Motivated by the observation that the phenomenon is observed in a broad pumping frequency range that coincides with the mid-infrared electronic absorption peak still of unclear origin, rather than to transverse optical phonons as has been proposed, we advance here a radically new mechanism. First, we argue that this broad absorption peak represents a 'super-exciton' involving the promotion of one electron from the t(1u) half-filled state to a higher-energy empty t(1g) state, dramatically lowered in energy by the large dipole-dipole interaction acting in conjunction with the Jahn-Teller effect within the enormously degenerate manifold of (t(1u))(2)(t(1g))(1) states. Both long-lived and entropy-rich because they are triplets, the infrared-induced excitons act as a sort of cooling mechanism that permits transient superconductive signals to persist up to much higher temperatures

    An evaluation of the effectiveness of PROMPT therapy in improving speech production accuracy in six children with cerebral palsy

    Get PDF
    This study evaluates perceptual changes in speech production accuracy in six children (3 – 11 years) with moderate-to-severe speech impairment associated with cerebral palsy before, during, and after participation in a motor-speech intervention program (Prompts for Restructuring Oral Muscular Phonetic Targets). An A1BCA2 single subject research design was implemented. Subsequent to the baseline phase (phase A1), phase B targeted each participant’s first intervention priority on the PROMPT motor-speech hierarchy. Phase C then targeted one level higher. Weekly speech probes were administered, containing trained and untrained words at the two levels of intervention, plus an additional level that served as a control goal. The speech probes were analysed for motor-speech-movement-parameters and perceptual accuracy. Analysis of the speech probe data showed all participants recorded a statistically significant change. Between phases A1 – B and B – C 6/6 and 4/6participants, respectively, recorded a statistically significant increase in performance level on the motor speech movement patterns targeted during the training of that intervention. The preliminary data presented in this study make a contribution to providing evidence that supports the use of a treatment approach aligned with dynamic systems theory to improve the motor-speech movement patterns and speech production accuracy in children with cerebral palsy

    Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass

    Get PDF
    Lignocellulosic biomass is an attractive carbon source for bio-based fuel and chemical production; however, its compositional heterogeneity hinders its commercial use. Since most microbes possess carbon catabolite repression (CCR), mixed sugars derived from the lignocellulose are consumed sequentially, reducing the efficacy of the overall process. To overcome this barrier, microbes that exhibit the simultaneous consumption of mixed sugars have been isolated and/or developed and evaluated for the lignocellulosic biomass utilization. Specific strains of Escherichia coli, Saccharomyces cerevisiae, and Zymomonas mobilis have been engineered for simultaneous glucose and xylose utilization via mutagenesis or introduction of a xylose metabolic pathway. Other microbes, such as Lactobacillus brevis, Lactobacillus buchneri, and Candida shehatae possess a relaxed CCR mechanism, showing simultaneous consumption of glucose and xylose. By exploiting CCR-negative phenotypes, various integrated processes have been developed that incorporate both enzyme hydrolysis of lignocellulosic material and mixed sugar fermentation, thereby enabling greater productivity and fermentation efficacy
    • …
    corecore