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ABSTRACT: Collagen type I is one of the major structural proteins in mammals, providing tissues 

such as cornea, tendon, bone, skin, and dentin with mechanical stability, strength, and toughness. 

Collagen fibrils are composed of collagen molecules arranged in a quarter-stagger array that gives 

rise to a periodicity of 67 nm along the fibril axis, with a 30-nm overlap zone and a 37-nm gap 

zone. The formation of such highly organized fibrils is a self-assembly process where electrostatic 

and hydrophobic interactions play a critical role in determining the staggering of the molecules 

with 67-nm periodicity. While collagen self-assembly has been extensively studied, not much is 

known about the mechanism, and in particular, the nature of the nuclei that initially form, the 

different stages of the aggregation process, and how the organization of the molecules into fibrils 

arises. By combining time-resolved cryo-transmission electron microscopy with molecular-

dynamics simulations, we show that collagen assembly is a multi-step process in which the 

molecules first form filaments which self-organize into fibrils with a disordered structure. The 

appearance of the D-band periodicity is gradual and starts with the alignment of adjacent filaments 

at the N-terminal end of the molecules, first leading to bands with a periodicity of 67 nm and then 

to the formation of gap and overlap regions.  
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INTRODUCTION 

 

Collagen type I is a major structural element in the extracellular matrix of tissues, such as skin, 

bone, dentin, and cornea, providing them with mechanical stability, strength, and toughness. The 

basic building block of the collagen fibril is the collagen molecule, which is a triple helix composed 

of two α1 chains and one α2 chain characterized by a repeating sequence of Gly-X-Y, where X 

and Y are often proline and hydroxyproline, respectively. Each molecule is approximately 300 nm 

in length and 1.5 nm in diameter. The molecules are organized into microfibrils, which build the 

collagen fibrils. Each microfibril is composed of 5 molecules arranged in a quarter-staggered array 

that gives rise to a D- period of 67 nm. This periodicity is due to the molecules being staggered 

with respect to each other in the axial direction by 67 nm, and results in a 30 nm overlap zone 

(0.46D) and a 37 nm gap zone (0.54D) 1-3. This arrangement is evident at the fibrillar level when 

fibrils are visualized by transmission electron microscopy, where the overlap zones appear as dark 

bands, and the gap zones as light bands 2. 

One of the most interesting features of collagen type I is the remarkable ability of the molecules 

to form such highly organized fibrils through self-assembly. The thermodynamic driving force for 

this process has a large entropic component, arising from the loss of surface-bound structured 

water. At low concentrations assembly follows a nucleation and growth mechanism with the extent 

of self-assembly following a typical sigmoidal curve 4-7. Nuclei form in the lag phase, and then 

grow through axial and lateral association during the exponential phase. At high concentrations 

(above 100 mg/ml), assembly occurs through the formation of a cholesteric liquid crystalline 

phase, where both the concentration of the molecules and the viscoelasticity of the medium play a 

role in regulating fibril diameter8, 9. 
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The organization of the collagen molecules into structures with a 67-nm D-periodicity is due to 

the staggering of the triple helices by multiples of 234 residues10, 11, resulting in the maximization 

of the electrostatic and hydrophobic interactions between the molecules. Furthermore, the 

telopeptides – non-helical peptides at the N- and C-termini of the triple helices – also play a critical 

role in the self-assembly. Their proteolytic cleavage or the use of inhibitors significantly increases 

the time required for fibrillogenesis, inhibiting the axial and lateral growth of the fibrils, and the 

ones that eventually form have no distinguishable D-bands, meaning that there is no order in the 

packing of the microfibrils within the structure 4, 12-15.  

The mechanisms of collagen self-assembly have been extensively studied over the years. It is 

known that the self-assembly is dependent on collagen concentration, pH, ionic strength, and 

temperature of the solution16-19, and that these factors determine the morphologies and organization 

of the collagen fibril networks, microfibril density, D-periodicity, and collagen-collagen and 

collagen-substrate interactions 20-24. One of the challenges in understanding collagen self-

assembly, though, has been to identify the different stages and the intermediates in this process. 

Most studies on collagen self-assembly were performed at low concentrations (less than 10 

mg/ml), where collagen has been proposed to assemble in three steps: nucleation, axial growth, 

and lateral growth25. The nucleation phase would involve the formation of intermediates, proposed 

to consist of linear quarter- staggered units varying from dimers and trimers to structures 

containing between 5 and 17 molecules packed laterally26-28.  Their axial growth to form filaments 

5-10 nm thick would follow, and their subsequent lateral association would lead to mature fibrils. 

More recent studies have suggested that microfibrils constitute the building blocks of collagen 

fibrils, with the formation of the 67-nm D-band apparent at very early stages29, 30. 
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Despite all of the advances in understanding the factors that govern collagen self-assembly and 

the different stages in the process, the detailed mechanism is still largely unknown. There is still 

little information on the nature of the nuclei that initially form during the lag phase, and it is not 

known how the nuclei and filaments self-organize into ordered fibrils with the characteristic D-

periodicity. Understanding the mechanisms of collagen self-assembly is of crucial importance, 

given that its structure and the proper alignment of the molecules in the quarter-staggered 

arrangement are critical for the integrity of several tissues, and for its ability to template 

hydroxyapatite during osteogenesis. Here, we used cryo-transmission electron microscopy 

(cryoTEM) to perform a time-resolved study on the mechanisms of self-assembly of collagen 

molecules into fibrils in solution. In combination with coarse-grained molecular-dynamics (MD) 

simulations, we show that collagen self-assembly starts with the formation of filaments that are 5 

molecules-thick, and devoid of long-range order. These filaments then associate to form disordered 

fibrils, which eventually evolve into ordered structures with the typical D-band periodicity. 

Therefore, an important aspect of this work is the use of complementary experimental and 

simulation techniques to build up a complete picture of collagen fibrillogenesis. 

 

MATERIALS AND METHODS 

 

Collagen assembly: Acid-soluble bovine telopeptide-containing collagen solution (TeloCol, 

Advanced Biomatrix) or bovine collagen devoid of telopeptides (PureCol, Advanced Biomatrix) 

was diluted into 50 mM Tris buffer pH 7.4 containing 150 mM of NaCl to a concentration of 200 

µg/ml and incubated at 37 °C. Samples were either incubated in a water bath and aliquots were 
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collected at different time points and frozen in liquid ethan for cryoTEM analysis, or placed in a 

UV-vis spectrophotometer (see below). 

 

Staining of collagen with sodium phosphotungstate: Staining of collagen with sodium 

phosphotungstate was performed immediately before vitrification. Aliquots of 50 µl were collected 

from the reaction, mixed 1:1 in 2 % sodium phosphotungstate (Sigma-Aldrich), incubated for 15 

seconds and plunge-frozen in liquid ethane. 

 

Turbidity measurements: The turbidity measurements were performed using a VARIAN Cary 

50 UV-vis spectrophotometer with the absorbance at 310 nm at 37 °C being measured every 2 

minutes for the duration of the experiment. 

 

CryoTEM analysis: R2/2 Quantifoil cryoTEM Au grids, grids (Quantifoil Micro Tools GmbH) 

were surface plasma treated for 45 seconds using a Quorumtech Glow Discharge system or a 

Cressington 208 carbon coater prior to use. Aliquots of 3 µl were taken from the reaction solution, 

applied to a cryoTEM grid and plunge-frozen in liquid ethane using a vitrification robot (FEI 

Vitrobot Mark III and IV), at 21 °C and 100 % humidity. Imaging was done using an FEI F20 

Tecnai transmission electron microscope equipped with a field-emission gun operating at 200 keV 

and a Gatan cryoholder operating at -170 °C was used. Images were recorded using an 8k x 8k 

CMOS TVIPS F816 camera. Alternatively, a TU/e CryoTitan transmission electron microscope 

(FEI) equipped with a field emission gun operating at 300 keV, a post-column Gatan Energy Filter 

(GIF) and a post-GIF 2k x 2k CCD camera was used.   
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Image analysis: Mass-density profiles were measured using the line profile feature in Gatan 

Digital Micrograph. Measurements were taken along the length of a fibril and each point was 

integrated across the width of the fibril.  

 

MD simulations: A coarse-grained collagen molecule was constructed from 200 beads with 

diameter  =  1.5 nm (overall length 300.0 nm) and divided in to nine alternating segments (see 

Fig. 2a) of 20 beads (30.0 nm) and 25 beads (37.5 nm) with bond length 1.5 nm. The interactions 

between beads were expressed in terms of the Lennard-Jones (LJ) potential 𝑢LJ(𝑟) =

4𝜀[(𝜎 𝑟⁄ )12 − (𝜎 𝑟⁄ )6] where 𝑟 is the distance between beads, and 𝜀 and 𝜎 are the energy and 

range parameters, respectively. Attractive interactions, given by the cut-and-shifted potential 

𝑢att(𝑟) = 𝑢LJ(𝑟) − 𝑢LJ(2.5𝜎) for 𝑟 ≤ 2.5𝜎, operate between beads in the following pairs of 

segments: 1 and 3; 2 and 4; 3 and 5; 4 and 6; 5 and 7; 6 and 8; 7 and 9; and 9 and 1. All other 

interactions are repulsive, and are given by the Weeks-Chandler-Andersen (WCA) potential 

𝑢rep(𝑟) = 𝑢LJ(𝑟) − 𝑢LJ(21/6𝜎) for 𝑟 ≤ 21/6𝜎. The stiffness of the molecule is controlled with 

harmonic bond-stretching and bond-bending potentials with a spring constant of 2000𝜀 in both 

cases. 𝑁 = 500 molecules (with 105 beads) were placed randomly in a cubic box with length 𝐿 =

792 nm, corresponding to a concentration of 1.67 M; for a molecular mass of 300 kDa, this 

equates to 500 g ml−1, a similar value to that used in the experiments. Periodic boundary 

conditions were applied. MD simulations were carried out with the solvent being represented 

implicitly by random Brownian forces and viscous (Stokes) forces acting on the beads. The 

calculations used reduced units: the dimensionless temperature is 𝑇∗ = 𝑘B𝑇 𝜀⁄ , where 𝑘B is 

Boltzmann’s constant; the reduced concentration is 𝑐∗ = 𝑁𝜎3 𝑉⁄ = 3.40 × 10−6, where 𝑉 = 𝐿3 

is the box volume; and the reduced time is 𝑡∗ = 𝑡√𝜀 𝑚𝜎2⁄  where 𝑚 is the nominal bead mass. 
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Simulations were carried out at reduced temperature 𝑇∗ = 1, with Stokes friction coefficient 𝛾∗ =

1, and with reduced time step 𝛿𝑡∗ = 0.01. A run of 0.2 ×  109 time steps (𝑡∗ = 0.2 × 107) with 

repulsive interactions only was used to equilibrate a disordered structure, and then 1.9 ×  109 time 

steps (𝑡∗ = 1.9 × 107) were performed with the attractive interactions defined above to simulate 

the self-assembly process. All simulations were carried out using LAMMPS31,32. 

 

RESULTS 

 

Time-resolved study of collagen self-assembly: The self-assembly of collagen molecules into 

fibrils was induced by diluting type-I collagen dissolved in 10 mM HCl at pH 2 with a Tris-

buffered saline solution (150 mM Tris buffer and 150 mM NaCl) to a final concentration of 

200 µg ml−1 at pH 7.4 and 37 °C. This concentration was chosen so that we could resolve the 

growth and development of individual fibrils using cryoTEM during the nucleation and growth 

stages. Two forms of commercially available type I collage were used: TeloCol (Advanced 

Biomatrix), which contains the telopeptides, and PureCol (Advanced Biomatrix), which had the 

telopeptides removed. The fibrillogenesis process was monitored by measuring the increase in the 

turbidity of the solution by UV-vis spectrophotometry at 310 nm. As previously reported for type-

I collagen 5, the turbidity curves for the telopeptide-containing collagen followed a typical 

sigmoidal pattern, with three stages: a lag-phase period with no detectable increase in turbidity, 

lasting approximately 7 minutes; a growth phase in which the turbidity increased rapidly; and a 

plateau region where turbidity did not change any more (Fig. 1a). No increase in turbidity was 

observed for the collagen devoid of telopeptides (Fig. 1a), indicating that no self-assembly took 
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place. Therefore, subsequent cryoTEM measurements were done only on telopeptide-containing 

collagen. 
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Figure 1. Turbidity curve of TeloCol (telopeptide-containing-collagen, black circles) and PureCol 

(atelo-collagen, black squares) (a) and time-resolved cryo-transmission electron microscopy 

(cryoTEM) images of the different stages of TeloCol self-assembly (b-g). a) Increase in turbidity 

over time during TeloCol assembly in Tris-buffered saline solution at 37 °C. Red arrows indicate 

time points when samples were collected for cryo-transmission electron microscopy analysis. b) 

After 5 minutes of reaction line-like structures 2 nm-thick were present (black arrowheads). Inset: 

higher magnification of the area marked by the dashed square. c) Image taken after 7 minutes, 

where filaments 4 nm-thick were starting to organise into fibrillary structures (black arrowheads). 

Inset: higher magnification of the area marked by the dashed square. d) After 10 minutes, where 

disordered, loosely packed fibril-like structures were present. e) Collagen fibrils imaged after 15 

minutes. The D-banding of collagen started to develop (dotted square) at the core of the fibril. 

Black arrowheads: bands extending from the well-organised core to the poorly organised 

periphery. f) Fibril imaged after 20 minutes had well-defined gap and overlap regions (dotted 

square). Black arrowheads: poorly ordered region at the periphery of the fibril, containing 4 nm-

thick filaments. g) Mature fibrils present after 40 minutes of reaction. h), i) and i) Mass-density 

profiles of the areas marked by the dotted squares in e), f) and g), respectively. Valleys in the mass-

density profile (lower counts) correspond to darker areas in the cryoTEM images, such as dark 

bands separating between the different regions in a 67-nm repeat. 

 

 

Using the turbidity curve as a guide, samples were collected at different time points during the 

lag, growth, and plateau phases (Fig. 1a, arrows), plunge-frozen in liquid ethane, and analyzed by 
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cryoTEM. This allows the imaging of collagen during the different stages of self-assembly, 

ensuring the preservation of the molecular structures in their close-to-native, hydrated states33. 

After 2 minutes of reaction, the collagen was still present mostly in its molecular form, as no 

features or objects were visible in the cryoTEM images (see Supporting Information 1, Fig. S1). 

Individual collagen molecules, about 1.5 nm thick, do not provide enough contrast to be visible 

within the amorphous ice layer under the imaging conditions used. However, after 5 minutes, 

aggregates were present in the solution, evident by the observation of line-like structures with a 

thickness of 2.2 ± 0.5 nm (Fig. 1b, arrowheads). These structures were significantly thinner and 

shorter than the 5-10 nm filaments previously imaged by conventional TEM 20, 25, and it is 

conceivable that they constitute collagen dimers and trimers, as proposed before 27, 34. The onset 

of fibril formation corresponded to the start of the exponential phase in the turbidity curve, at 7 

mins. At this stage, the molecular aggregates had further self-assembled into a network of 

filamentous structures 4.0 ± 0.6 nm in diameter (Fig. 1c, arrowheads) and hundreds of nanometers 

long that were aligned into parallel arrays. Although these filaments had the same thickness as a 

microfibril, suggesting that they are bundles of 5 molecules, we do not know if they had the same 

quarter-staggered organization. After 10 minutes of reaction these filaments developed into 

disorganized, loosely packed pre-fibrillar structures spanning a few microns in length (Fig. 1d). 

These pre-fibrillar structures can be seen to further self-organize into compact fibrils 30 to 60 nm 

thick, concomitant with the appearance of the characteristic banding pattern of collagen. Indeed, 

Fig. 1e depicts a fibril that has two distinct regions: a well-organized core with an average D-band 

spacing of 68 nm (Fig. 1e, red box), and a poorly organized periphery. At this stage, it is difficult 

to distinguish between the gap and overlap zones within the 68-nm banding. Instead, these repeats 

are divided into three bands of similar contrast, with two bands measuring 25 nm separated by a 



 12 

lighter band 18 nm wide (Fig. 1e and 1h). While the periphery of the fibril did not yet exhibit a 

banding pattern, bands extending from the well-ordered core could already be distinguished (Fig. 

1e, arrowheads). Additionally, it can be seen that the forming fibrils are composed of filaments 

approximately 4 nm thick, similar to the ones found at 7 minutes (see Supporting Information 2, 

Fig. S2). 

Fibrils observed after 20 minutes of reaction were between 50 and 100 nm in width and were 

compact and well organized showing a well-defined banding pattern with distinct gap and overlap 

zones (Figs. 1f and 1i). Interestingly, the length of the D-banding at this stage was longer than at 

10 minutes: 71 nm, with the gap region measuring 45 nm, and the overlap region measuring 26 

nm. In addition, filaments 4 nm-thick were also present, merging with the fibril at its periphery 

and forming a thin, disordered layer (Fig. 1f, arrowheads). Averaging the mass-density profiles of 

the fibrils present after 15 and 20 minutes to better characterize their banding patterns35, 36 was not 

possible since at this stage of self-assembly they were still forming and not all identical. 

After 45 minutes, which corresponded to the plateau region in the turbidity curve, the fibrils 

were fully mature, measuring 100–300 nm in diameter. Moreover, the D-spacing now measured 

67 nm, with a gap zone of 39 nm and an overlap zone of 28 nm (Figs. 1g and 1j). These values are 

in the range of those found in previous reports1, 3.  

Our data show two self-assembly processes occurring during collagen fibrillogenesis. The first 

stage is the clustering and organization of the molecules into 4 nm-thick filaments. We suggest 

that these filaments are 5 molecules-thick, similar to microfibrils that constitute the basic unit of 

collagen fibrils. However, we cannot determine if within these filaments the molecules are 

organized in the quarter-stagger arrangement or not, and hence whether they already have the 

microfibril structure 1 or not. In the second stage, these filaments align and self-organize into 
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disordered pre-fibrillar structures, which gradually anneal into mature, ordered fibrils. To gain 

more insight on the mechanisms of this self-assembly process, both stages were further 

investigated with two complementary approaches covering the different size and time domains. 

As the first stage is not directly observable using microscopy techniques, MD simulations of a 

simplified model were used to gain insights on the very first steps of collagen fibrillogenesis. The 

second stage involves the formation of fibrils which are directly observable using cryoTEM 

methods, but the timescales (minutes) are inaccessible to molecular-level simulations.  

 

Stage 1 – filament formation: To make a relevant model for the assembly of collagen we should 

consider the following: 500 collagen molecules contain about 21 million atoms. At the 

experimental concentration, the cubic box length is 𝐿 = 792 nm, which contains about 17 billion 

water molecules. Therefore, to simulate the self-assembly of collagen with atomic or chemical 

resolution over the relevant length and time scales is impossible. In coarse-grained models, only 

the most relevant molecular details are retained in order to describe the phenomena of interest. In 

the present case, this necessarily means that chemical details, atomic-scale structure, solvent, etc. 

are omitted from the model. This type of strategy has been followed to study collagen assembly 

on surfaces24 as well as in the biophysical modelling of several other processes37 such as genome 

packing38, protein folding39, protein aggregation40, DNA melting41, DNA unzipping42, amyloid 

aggregation43, virus capsid self-assembly44, and biomineralization45. 

 A minimal coarse-grained model was therefore constructed to give the polar ordering of 

collagen molecules and with the correct quarter-staggering between pairs of molecules (Fig. 2).  

Each molecule was represented by a linear chain of 200 beads with diameter 𝜎 = 1.5 nm, divided 

up into segments to reflect the lengths, diameters, overlap zone, and gap zone of collagen 
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molecules (Fig. 2a). The interactions between beads in particular segments were either attractive 

or repulsive so as to stabilize the correct ordering of molecules within clusters. Nine segments 

were used so that the energy of parallel (polar) ordering of the molecules was much lower (more 

favorable) than that of anti-parallel ordering. It is important to note that in this coarse-grained 

model the segments were not intended to represent the real amino-acid sequence, charge 

distribution, or van der Waals interactions. However, to do anything else is currently not feasible. 

The solvent was represented implicitly as a continuum. MD simulations of 𝑁 = 500 collagen 

molecules at the experimental concentration were carried out under constant-temperature 

conditions using the LAMMPS software package31, 32. The self-assembly of the molecules in a 

viscous liquid under isothermal conditions was thereby simulated, corresponding to the 

experimental conditions. If the interaction model contains the essential features of the real 

molecules, then the simulated mechanism should give relevant insights on the self-assembly 

pathway.  

 



 15 

 

Figure 2. The coarse-grained molecular model used in simulations. a) Schematic diagram of 

coarse-grained collagen molecules showing segments 1-9 aligned in a low-energy configuration. 

Each segment is made up of a chain of beads interacting via attractive or repulsive potentials. The 

interaction between two coloured (30.0 nm) segments (1,3,5,7,9) or two black (37.5 nm) segments 

(2,4,6,8) is attractive, while the interaction between a black segment and a coloured segment is 
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repulsive. The red and blue segments indicate the polar ordering of the molecules, and the other 

short segments are shown in green. b)–e) Snapshots of the system at different simulation times: b) 

𝑡∗ = 0.0; c) 𝑡∗ = 0.4 × 107; d) 𝑡∗ = 0.9 × 107; e) 𝑡∗ = 1.9 × 107. The main panels show only 

those molecules which form the largest cluster at the end of the simulation (𝑡∗ = 1.9 × 107). Insets 

show the whole system at low magnification; the box length is 𝐿 = 792 nm. f) High magnification 

of the largest cluster formed at  𝑡∗ = 1.9 × 107. 

Despite its simplicity, the model results in staggering between molecules where the overlap and 

gap distances are well in line with the experimental values for collagen 3, 36. Indeed, while at the 

beginning of the simulation (Fig. 2b) the molecules were completely dissociated from each other, 

during the simulation the combined interactions within the model give rise to dimers with parallel 

(and polar) ordering of the molecules and their axial staggering by 67 nm, with overlap and gap 

distances of 30.0 nm and 37.5 nm, respectively. Subsequently the simulation showed the formation 

of, trimers, tetramers etc., and ultimately filaments (Figs. 2c–2e and supplementary movies 1 and 

2), while the proportion of dissociated monomers decreased. Importantly, filament growth 

occurred predominantly in the axial direction, while growth in the lateral direction was limited. 

The assembly of the collagen molecules was monitored through the evolution of the radial 

distribution function (RDF) 𝑔(𝑟) of the centers of mass (COMs) of the segments (Fig. 3a). The 

RDF measures the probability of finding two segment COMs separated by a distance r 46, and 

reflects the progress of fibrillogenesis as the segment COMs come into registry during collagen 

self-assembly. At the start of the simulation, the first two peaks were at 𝑟 = 33.7 nm and 𝑟 =

67.5 nm, which correspond to the distances between segment COMs on the same molecule: the 

first peak is at the average of the short-segment and long-segment lengths, meaning adjacent 

segments; and the second peak is at the sum of these two lengths, meaning two segments separated 
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by a third. For all other distances in the range 0 nm ≤ 𝑟 ≤ 75 nm, it was seen that 𝑔(𝑟) = 1, 

indicating that there were no correlations between segment COMs on different molecules. Hence, 

there was a random distribution of the collagen molecules at the start of the simulation. 

At the end of the simulation, there was an intense and broad band at 𝑟  15 nm, which signaled 

strong intermolecular association, since there is no other way that segment COMs can get that 

close to one another; recall that the COMs of adjacent segments on the same molecule are separated 

by 33.7 nm. The peaks near 33.7 nm and 67.5 nm were broadened due to a thermal distribution 

of distances between segment COMs on neighboring molecules, resulting from molecules being a 

few bead diameters away from the perfect, lowest-energy alignment; the intramolecular 

contributions to these peaks were, of course, unaffected by such thermal fluctuations. 



 18 

 

Figure 3. Results from MD simulations. a) Radial distribution functions [RDF or 𝑔(𝑟)] of the 

segment centers of mass at the start of the simulation (black) and at the end of the simulation (red). 

The peak at 33.7 nm represents the average of the short-segment and long-segment lengths, and 

the peak at 67.5 nm represents the sum of the two segment lengths, both reflecting the 

intramolecular structure. b) The fraction of particles in clusters, 𝑓cluster , as a function of time from 

simulation (black) and as fitted by the von Smoluchowski model (red and green). c) The average 
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cluster size 〈𝑠〉 from simulation (black) and as fitted by the von Smoluchowski model (red and 

green). The extrapolation of the average cluster size to 𝑡∗ = 2.0 × 107 is 〈𝑠〉 = 4.93. In b) and c), 

the red curves are with a rate coefficient fitted to 𝑓cluster, and the green curves are with a rate 

coefficient fitted to 〈𝑠〉. 

 

Given the very low concentration, there is negligible probability of two randomly oriented 

molecules having segment COMs in contact (Fig. 3a), which makes this a sensitive measure for 

assembly formation. Therefore, two molecules were considered clustered (in dimers or larger 

structures) if at least two segment COMs had a separation of less than 15 nm. During the 

simulations, the fraction of molecules in clusters,  𝑓cluster, gradually increased with ~95% of the 

molecules being part of clusters by the end of the simulation (𝑡∗ = 1.9 × 107, Fig. 3b). Applying 

simple von Smoluchowski kinetics of sequential cluster growth 47 (Supporting Information 3), we 

can derive a time-dependent average cluster size 〈𝑠〉 (Fig. 3c). Extrapolation of 〈𝑠〉 gives an average 

cluster size 〈𝑠〉 = 4.93 at 𝑡∗ = 2.0 × 107, while the approximately constant slope of the plot time 

suggests that further growth of the clusters will occur, either through further association of the 

existing clusters, or by a dissociation-reassociation mechanism similar to an Ostwald ripening 

process. At 𝑡∗ = 1.9 × 107 a wide range of cluster sizes was apparent. The largest filament 

contained approximately 30 molecules (270 segments), had a length of about 50 segments, and 

hence an average cross section of 5-6 molecules, although there were thick and thin sections (Fig. 

2f). Assuming an approximately close-packed lateral arrangement of the molecules (Fig. 2f), the 

average diameter was ~4.5 nm. Although the molecules were designed to show a staggering 

between pairs well in line with the established dimensions of the gap and overlap regions in 

collagen, and the resulting diameters of the filaments were in good agreement with the 
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experimental observations, the simulations did not show evidence for long-range positional order 

within the filaments (Fig. 2f). Specifically, although the segments on different molecules have self-

organized into bands, stabilized by the attractive interactions between segments defined in the 

coarse-grained model, the molecules do not exhibit any lateral or longitudinal order within 

filaments. 

These simulations support the presence of a lag time during the early stages of fibrillogenesis, 

where turbidity measurements cannot detect any structure formation, but during which individual 

collagen molecules assemble into staggered dimers, trimers, etc. with diameters of 3.0 nm and 

above. Further axial and lateral combination of single molecules, dimers, trimers, etc. leads to the 

formation of 4.5 nm thick disordered filaments. These are distinct from the well-defined 

microfibrils found inside collagen fibrils, in which molecules are ordered into ‘unit cells’ with a 

quarter-staggered arrangement 1. Following this scenario, therefore, the quarter-stagger ordering 

of the collagen molecules must occur at a later stage, either during or after the assembly into the 

larger fibrils. 

 

Stage 2 – from filament to fibril: In order to gain a more detailed insight into the mechanisms 

of assembly of the initial filaments into mature fibrils, we combined cryoTEM with sodium 

phosphotungstate staining. Sodium phosphotungstate binds to the positively charged amino acids 

of collagen, increasing the local mass density in those regions and allowing us to observe 11 

distinct bands within one D-repeat (a through e) 48, 49. The bands c2, c1,b2, b1, and a4 are located 

in the overlap region, and bands a3, a2, a1, e2, e1, and d are in the gap region. These bands have 

been correlated to the corresponding spatially close groups of positively charged amino acids in 

the amino-acid sequence of collagen 48, 49. Staining collagen at different stages of formation 
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therefore provides detailed information on how during fibrillogenesis, the collagen molecules 

organize into a highly-ordered collagen fibril (Fig. 4). 

Samples collected after 7 minutes and stained with sodium phosphotungstate showed the 

presence of a disorganized network of filaments 4.6 ± 0.7 nm in diameter (Fig. 4a). These were 

similar in size to the ones observed in unstained samples, but with significantly higher contrast 

due to the positive staining. After 10 minutes these filaments started to align into parallel arrays, 

leading to loosely packed pre-fibrillar structures. Although these fibrillar structures were up to 1 

µm in width, their contrast in cryoTEM suggests that they were only a few fibrils thick, hence 

possibly residing at the air-water interface of the thin film prior to plunge freeze vitrification (Fig. 

4b). 

 

Figure 4. Time-resolved cryo-transmission electron microscopy (cryoTEM) images of the 

different stages of collagen self-assembly stained with sodium phosphotungstate. a) After 7 
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minutes of reaction a network of filaments 4 nm-thick was present. b) Image taken after 10 

minutes, showing filaments aligned into parallel arrays, forming loosely packed fibril-like 

structure. c) Collagen fibril imaged after 15 minutes, with 4 nm-thick filaments in the surrounding 

medium (black arrowheads). Gradual stages of assembly can be seen in the fibril (insets 1, 2 and 

3). White arrowheads in inset 3: doublets of staining bands. d) Collagen fibril imaged after 15 

minutes at a more developed stage of assembly, where staining bands are more discernible. Black 

arrowheads: 4 nm-thick filaments in the surrounding medium. e) Fibril imaged after 20 minutes. 

f) Mature fibrils present after 40 minutes of reaction. 

 

As with the unstained samples, after 15 minutes of assembly the fibrils were significantly more 

compact, with diameters of ca. 90 nm (Fig. 4c and Supporting Information 4, Fig. S3). Filaments 

of 4 nm in diameter were present in the surrounding medium, becoming incorporated into the 

fibrils and extending their diameter (Fig. 4c, black arrowheads and Supporting Information 4, Fig. 

S3).  From this stage onwards, the positive staining revealed the progression of the ordering within 

the fibrils through the development of the staining bands. This is exemplified by Fig. 4c which 

shows a fibril containing three regions with distinct stages of organization. Region 1 displayed no 

visible organization and hence no staining bands could be distinguished (Fig. 4c, inset 1 and Fig. 

5a). The first signs of the alignment of the microfibrils within the fibrils were visible in region 2, 

where two doublets of dark bands interspaced by a distance of 66 nm had appeared (Fig. 4c, inset 

2) which were clearly visible in the corresponding mass-density profile (Fig. 5b, black 

arrowheads).  

Importantly, this doublet - always separated by a distance of 66 nm - was a constant feature in 

the development towards the more ordered fibrils (Fig. 4c, inset 3, white arrowheads, and Fig. 5c, 
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black arrowheads). This shows, therefore, the first appearance of a repetitive structure 

corresponding to the D-staggering of the molecules within the fibril. Additionally, a number of 

staining bands, still ill-defined and within a strong background, were starting to emerge, indicating 

the development of the microfibrils within the (pre-)fibrillar structure. However, no gap and 

overlap regions could be distinguished at this stage. 

Fibrils in a more advanced stage of assembly were also present after 15 minutes (Fig. 4d and 

Supporting Information 5, Fig. S4). They displayed a regular staining pattern with a D-band 

periodicity of ~ 66 nm, showing that the now collagen microfibrils had become aligned with 

respect to each other (Fig. 4d). This pattern translated into well-defined peaks in the mass-density 

profile (Fig. 5d) that could already be assigned to their respective classifications (c2, c1, etc.) with 

the exception of peaks a2, a3 and a4, which were still merged into one band. From this, it becomes 

evident that the doublet of bands that were first to appear (Fig. 4c, insets 2 and 3 and Figs. 5b and 

c) are the d and c2 staining bands. Correlating the position of the staining bands with the amino-

acid sequence of collagen reveals that this region corresponds to the N-terminal end of the collagen 

molecules, at the border between the gap and overlap regions 48. It indicates that, once a 

disorganized bundle of filaments forms, they start their alignment at the N-terminal region of the 

molecules to generate the D-periodicity that is characteristic of collagen fibrils. This telopeptide 

was suggested to be important for placing the D-periods in register during lateral growth of the 

fibrils through the association of the microfibrils 13. Our observations are well in line with that. 
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Figure 5. Mass-density profiles of the collagen fibrils stained with sodium phosphotungstate 

depicted in Fig. 5. Each peak corresponds to a dark staining band. a) Mass-density profile of inset 

1 in Fig. 5c (15 minutes). b) Mass-density profile of inset 2 in Fig. 5c. c) Mass-density profile of 

inset 3 in Fig. 5c. d) Mass-density profile the collagen in Fig. 5d (15 minutes). e) Mass-density 

profile the collagen in Fig. 5e (20 minutes).  f)  Mass-density profile the collagen in Fig. 5f (40 

minutes). Black arrowheads in b)-f): peaks corresponding to the doublet of staining bands 
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delimiting the D-banding. The peaks in d)-f) correspond to well-defined staining bands and were 

assigned to their classification of a-e2, according to 48. 

 

After 20 min, the staining bands had become better defined, reflecting the increase in ordering 

and alignment of the adjacent microfibrils (Fig. 4e and Supporting Information 5, Fig. S4). 

Concomitantly the peaks in the mass-density profile, corresponding to the staining bands, became 

sharper and better defined (Fig. 5e). Additionally, at this point filaments were no longer present in 

the surrounding medium. After 40 minutes the fibril had become fully mature, with all 

characteristic staining bands present and being well-defined, demonstrating that the microfibrils 

were now well aligned within the fibrils (Figs. 4f and 5f). 

As the assembly progressed, we analyzed the length of the D-banding repeat by fitting a sum of 

Gaussian functions to the mass-density profile of the different fibrils (Supporting Information 6, 

Fig. S5).  After 15 minutes of assembly (Fig. 4d) this yielded a D-band periodicity of 65.9 ±

3.4 nm with an average full-width half-maximum (FWHM) of 4.6 ± 0.5 nm. Interestingly, after 

20 minutes the length of the D-banding had increased to 70.2 ± 3.0 nm and an average FWHM 

of 4.1 ± 0.2 nm, consistent with the unstained collagen imaged at the same stage (Figs. 1e and 

1h). Then after 40 minutes, the mass-density fits gave again a shorter D-band periodicity of 67.8 ±

2.7 nm with an average FWHM of 3.5 ± 0.3 nm. The decreasing average FWHM show the 

alignment of the microfibrils to form a highly ordered fibril. While the differences in the D-band 

periodicity, obtained from the fitting of a Gaussian function to the mass-density profiles, might 

not be statistically significant, they indicate variations in the length of the D-periodicity as a 

function of the stage of assembly.    
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DISCUSSION 

 

We show that the self-assembly of type I collagen molecules into ordered fibrils is a multi-step 

process involving the evolution of long-range order. It starts with the assembly of collagen 

molecules into dimers/trimers and then filaments that are 4 nm thick and hundreds of nanometers 

long, which then align into uniaxially oriented, loosely-packed prefibrillar structures. This is 

consistent with the prevailing picture of formation of dimers/trimers, axial elongation, and then 

lateral thickening. The packing density of these bundles then increases, leading to the formation 

of fibrils still devoid of the 67-nm banding. The last stage is the appearance of the banding pattern 

within the fibrils. This is illustrated schematically in our proposed model in Fig. 6 as a structural 

evolution from molecules, through clusters, disordered filaments, and disordered fibrils, to ordered 

fibrils. Overall, this process is analogous to crystallization, where even the critical nuclei show 

some disorder 50 and amorphous phases precede a crystal lattice 51, 52. Here, the disordered, loosely 

packed fibrils are comparable to an amorphous intermediate, and the emergence of long-range 

order within fibrils is analogous to the ordering of the ions or molecules in a crystal lattice. In the 

case of collagen, however, the ordering occurs via the rearrangement of the pre-fibrillar structures, 

rather than through dissolution and re-precipitation. The three main stages of collagen 

fibrillogenesis – the formation of 4 nm-thick filaments, their lateral aggregation into prefibrillar 

structures and their evolution into fibrils with a well-defined banding pattern – will be discussed 

separately below.  
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Figure 6. Schematic diagram of the self-assembly process. 

 

Assembly of collagen molecules into filaments: Our cryoTEM observations show the presence 

of 2.2 ± 0.5 nm-thick line-like structures after 5 minutes of assembly. Given that the collagen 

molecules are ca. 1.5 nm in diameter and do not provide enough contrast to be visualized by 

cryoTEM individually, we propose that these structures correspond to collagen dimers and trimers. 

This interpretation correlates well with the MD simulations showing that collagen assembly starts 

with the aggregation of the molecules into staggered dimers and trimers. Probing the assembly 

further using MD simulations and cryoTEM, we show that these dimers and trimers aggregate 

laterally and longitudinally to form longer filaments that are around 5 molecules-thick and with a 
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diameter of 4 nm, similar in dimensions to microfibrils. Altogether, these observations are 

consistent with previous electron microscopy and dynamic light scattering measurements of 

collagen fibrillogenesis in vitro and in vivo 27, 34, 53.  

An important aspect of the self-assembly of the collagen molecules into fibrils is the stage in 

which they develop long-range order, in other words, the 67-nm pattern that is characteristic of 

mature fibrils. Our MD simulations show that the filaments that form in the first stage of assembly 

are devoid of such long-range order. This means that while molecules may form staggered dimers 

and trimers, the further growth of these units does not seem to lead to a bundle of 5 or more 

molecules already containing the microfibrillar organization, as is evident from the simulation 

snapshots. While these data must be verified experimentally, the aggregation of molecules to form 

such thin, disordered filaments with high surface-to-volume ratios makes sense from the 

thermodynamic point of view.  

Consider a dimer of collagen molecules in a low-energy, quarter-stagger arrangement. Where 

does a third molecule go? Provided that the strongest intermolecular interactions are short-ranged, 

the third molecule can occupy a number of low-energy configurations with respect to one of the 

other molecules, but not both; in the present case, if molecules 1 and 2, and molecules 2 and 3, 

have the ideal stagger, then molecules 1 and 3 will not have the ideal stagger. Hence, there is no 

energetic driving force for the third molecule to adopt the precise position that it would have in 

the microfibril. Because there is no single preferred cluster structure, a range of structures should 

be anticipated. To some extent, this argument can be extended to filaments provided that they are 

not too thick, meaning that the majority of molecules are not fully surrounded by neighbors as they 

would be in the bulk phase. Essentially, if the cluster of molecules is ‘small’, then the proportion 
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of molecules near the surface will be high, and because those molecules are not fully surrounded 

by other molecules, there will be many possible positions with comparable energies. 

In a fibril, there should be a thermodynamic benefit to having all of the molecules in their 

respective ‘unit-cell’ positions. The cost of producing a defect, whereby one or more molecules 

are shifted from their preferred positions, would arise from interactions with all of the surrounding 

molecules. Hence, there should be a narrow and well-defined manifold of ground-state structures. 

The interactions of each molecule with its full complement of surrounding molecules could be the 

cause of the banding that develops after the initial formation of disordered fibrils. Indeed, Tresladt 

et al. observed the presence of a 67-nm repeat pattern only on fibrils that were at least ca. 20 nm 

in thickness, and even then they still contained regions devoid of a periodic staining pattern 54. 

These results led to the conclusion that the initial fibrils were still loosely packed in order to allow 

readjustments of the molecules towards increased order. 

The organization of disordered filaments into disordered fibrils, and the subsequent development 

of the banding pattern, are considered next. 

 

Organization of filaments into fibrils: The next step in fibrillogenesis is the organization of 

the filaments into fibrils. We show that this process starts with the formation of uniaxially oriented 

bundles of loosely packed filaments, followed by their increase in packing density to generate 

compact fibrils. The mechanism for this initial alignment could be similar to that for the isotropic-

nematic phase transition in highly elongated molecules, in which the transition is driven mainly 

by the entropic contributions to the free energy. In the seminal theory proposed by Onsager 55, 56, 

the loss of orientational entropy on alignment is compensated by the gain of translational entropy 

afforded by the reduction in the excluded volume of two molecules. This isotropic-nematic phase 
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transition brings individual filaments in close proximity, so that electrostatic and hydrophobic 

interactions between molecules from adjacent filaments can take place and mediate the formation 

of compact fibrils.  

At this stage, these fibrils do not yet display the 67-nm periodicity, and based on our MD data 

we propose that the molecules are not yet in a quarter-stagger arrangement. These results are in 

contrast to AFM measurements that show the appearance of the D-banding of collagen at a very 

early stage, with the microfibrils already in register with the nascent fibrils when they fuse to the 

latter 30. These differences in observations are possibly due to the different experimental 

conditions, in particular the presence of a mica surface that may accelerate fibrillogenesis and give 

directionality to the assembly 22-24, 57. 

 

Development of the 67-nm banding pattern: The appearance of a periodic banded structure 

happened in the next stage, in a gradual process that started with the formation of bands 67 nm 

apart delineating the D-periodicity but with no further division of this period into a gap and overlap 

region. This division occurred later and gradually, as demonstrated by the appearance of the 

phosphotungstate staining bands. As the self-assembly progressed, they increased in intensity, 

becoming narrower and better defined, reflecting the clustering of positively and negatively 

charged amino acids in well-defined zones 48. The FWHM values of the individual peaks in the 

mass density profiles also show that the D-band became better resolved with time:after 15, 20, and 

40 minutes, the FWHM of the 12th peak (band c2), used to measure the length of the D-band, are 

5.4, 5.1, and 4.1 nm, respectively (Supporting Information S6, Fig. S6 and Table S1), which 

reflects a 30% increase in the resolution of the peaks. In combination with an increase in the 

average peak heights from 1.4 a.u., 6.1 a.u., and 7.0 a.u. (Supporting Information 6, Fig. S6 and 
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Table 1) with increasing time, the apparent D-band periodicity should be subject to statistical 

variations that decrease with time, and so the value after 40 minutes is statistically more significant, 

as well as naturally being more representative of mature fibrils.  

The variations in the length of the D-banding, together with the increase in the packing density 

of the fibrils as they assembled, are similar to those reported in the collagen matrix from dentin 

prior to mineralization 35. Beniash et al. observed that newly deposited collagen in the proximal 

zone of predentin were loosely packed and displayed a periodicity of 23.5 nm with no 

distinguishable fine structure as found in mature collagen. Fibrils at the central zone of predentin 

were thicker and more closely packed, with an average D-banding of 67 nm. These similarities 

indicate that as collagen fibrils are deposited in the extracellular matrix of tissues, they undergo a 

comparable maturation process involving the gradual organization of the molecules to give rise to 

the D-periodicity. One important difference, however, is that collagen deposition in vivo occurs at 

higher concentrations in compartmentalized intracellular spaces in the presence of regulatory 

proteins and under temporal control over the secretion of the molecules involved58. Therefore, 

other mechanisms may also be controlling fibrillogenesis in biological tissues. It is also noteworthy 

that mature fibrils can still undergo alterations in their structure. Intrafibrillar mineralization in 

collagen during bone and dentin formation, for instance, results in changes in the molecular 

packing and a decrease in the length of the D-banding 36, 59. 

An interesting structural feature of type I collagen fibrils of most connective tissues is that their 

constituent filaments are twisted with respect to the fibril axis by an angle of 17 ° 60, 61, forming a 

helical structure. The pitch of the twist is of several hundreds of nanometers, and was not 

discernible in our measurements of immature and mature fibrils. Thus, we cannot speculate at 
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which stage, and how, this twisting occurs as the filaments self-organize into fibrils and the 

collagen banding pattern arises. 

Combining cryoTEM with chemical staining was critical to understand how the quarter-stagger 

ordering of microfibrils within a fibril developed. The first bands to appear, delineating the 67-nm 

repeat, correspond to the N-terminal region of the molecules. We therefore hypothesize that that 

the first interactions between adjacent molecules, leading to their alignment, occur through the N-

terminal telopeptide. Although this hypothesis needs to be tested experimentally, it is in 

accordance with previous reports.Collagen assembly experiments in vitro showed that the N-

terminal telopeptide is important for lateral growth of the fibril 13. Furthermore, the binding of the 

N-telopeptide to a specific domain in the triple helix has been shown to induce an ordered 

conformation in the telopeptide, and would place the length of the D-band in the range of 66-68 

nm 62, as observed in our experiments. The alignment between adjacent molecules then propagates, 

driven by electrostatic interactions between the positively and negatively charged amino acids in 

adjacent filaments. The C-terminal telopeptide region of the fibril was the last one to align, as the 

a2, a3 and a4 bands could only be resolved after 40 minutes. This telopeptide has been reported to 

be essential in the early stages of assembly, i.e., during the lag phase 13. It is conceivable, therefore, 

that it mediates the association of the molecules during the formation of filaments at the early 

stages, and is less critical for their lateral association and further alignment to form mature fibrils. 

Our observations that atelo-collagen did not form fibrils support the role of the telopeptides in 

mediating collagen self-assembly. It is noteworthy that even fibrils that already have well-

developed gap and overlap regions still display a thin, disordered layer in their periphery, which 

is composed of newly fused microfibrils, not aligned with the bulk of the fibril. The presence of 
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such disordered surface layer in collagen fibrils is similar to an amorphous layer that is present in 

crystalline materials 63, 64.   

  

CONCLUSIONS 

In conclusion, we have demonstrated that the self-assembly of type-I collagen molecules into 

fibrils in solution occurs in several stages: it starts with the formation of dimers/trimers and then 

thin (4-nm wide) filaments, which self-organize into fibrils by lateral aggregation, leading to the 

formation of disordered, loosely packed arrays of uniaxially oriented strands. The packing density 

of these arrays then increases, generating compact fibrils that do not yet display the D-banding 

periodicity. The final step is the gradual alignment of the filaments within the fibrils to form the 

67-nm D-bands that are characteristic of type-I collagen. The formation of the 4 nm-thick filaments 

in the first step happens during the lag phase, and the subsequent stages occur in the exponential 

phase. Our results provide significant insights in the mechanisms of collagen self-assembly, and 

will help us to understand the formation of collagenous tissues in the body, such as cornea, bone, 

skin, and tendons, as well as elucidate how mutations in the amino-acid sequence affect fibril 

structure. 
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