192 research outputs found

    Algorithm Development for Intrafraction Radiotherapy Beam Edge Verification from Cherenkov Imaging.

    Get PDF
    Imaging of Cherenkov light emission from patient tissue during fractionated radiotherapy has been shown to be a possible way to visualize beam delivery in real time. If this tool is advanced as a delivery verification methodology, then a sequence of image processing steps must be established to maximize accurate recovery of beam edges. This was analyzed and developed here, focusing on the noise characteristics and representative images from both phantoms and patients undergoing whole breast radiotherapy. The processing included temporally integrating video data into a single, composite summary image at each control point. Each image stack was also median filtered for denoising and ultimately thresholded into a binary image, and morphologic small hole removal was used. These processed images were used for day-to-day comparison computation, and either the Dice coefficient or the mean distance to conformity values can be used to analyze them. Systematic position shifts of the phantom up to 5 mm approached the observed variation values of the patient data. This processing algorithm can be used to analyze the variations seen in patients being treated concurrently with daily Cherenkov imaging to quantify the day-to-day disparities in delivery as a quality audit system for position/beam verification

    Characterization of a Non-Contact Imaging Scintillator-Based Dosimetry System for Total Skin Electron Therapy.

    Get PDF
    Surface dosimetry is required for ensuring effective administration of total skin electron therapy (TSET); however, its use is often reduced due to the time consuming and complex nature of acquisition. A new surface dose imaging technique was characterized in this study and found to provide accurate, rapid and remote measurement of surface doses without the need for post-exposure processing. Disc-shaped plastic scintillators (1 mm thick  ×  15 mm [Formula: see text]) were chosen as optimal-sized samples and designed to attach to a flat-faced phantom for irradiation using electron beams. Scintillator dosimeter response to radiation damage, dose rate, and temperature were studied. The effect of varying scintillator diameter and thickness on light output was evaluated. Furthermore, the scintillator emission spectra and impact of dosimeter thickness on surface dose were also quantified. Since the scintillators were custom-machined, dosimeter-to-dosimeter variation was tested. Scintillator surface dose measurements were compared to those obtained by optically stimulated luminescence dosimeters (OSLD). Light output from scintillator dosimeters evaluated in this study was insensitive to radiation damage, temperature, and dose rate. Maximum wavelength of emission was found to be 422 nm. Dose reported by scintillators was linearly related to that from OSLDs. Build-up from placement of scintillators and OSLDs had a similar effect on surface dose (4.9% increase). Variation among scintillator dosimeters was found to be 0.3  ±  0.2%. Scintillator light output increased linearly with dosimeter thickness (~1.9  ×  /mm). All dosimeter diameters tested were able to accurately measure surface dose. Scintillator dosimeters can potentially improve surface dosimetry-associated workflow for TSET in the radiation oncology clinic. Since scintillator data output can be automatically recorded to a patient medical record, the chances of human error in reading out and recording surface dose are minimized

    Pilot Study Assessment of Dynamic Vascular Changes in Breast Cancer with Near-Infrared Tomography from Prospectively Targeted Manipulations of Inspired End-Tidal Partial Pressure of Oxygen and Carbon Dioxide

    Get PDF
    The dynamic vascular changes in the breast resulting from manipulation of both inspired end-tidal partial pressure of oxygen and carbon dioxide were imaged using a 30 s per frame frequency-domain near-infrared spectral (NIRS) tomography system. By analyzing the images from five subjects with asymptomatic mammography under different inspired gas stimulation sequences, the mixture that maximized tissue vascular and oxygenation changes was established. These results indicate maximum changes in deoxy-hemoglobin, oxygen saturation, and total hemoglobin of 21, 9, and 3%, respectively. Using this inspired gas manipulation sequence, an individual case study of a subject with locally advanced breast cancer undergoing neoadjuvant chemotherapy (NAC) was analyzed. Dynamic NIRS imaging was performed at different time points during treatment. The maximum tumor dynamic changes in deoxy-hemoglobin increased from less than 7% at cycle 1, day 5 (C1, D5) to 17% at (C1, D28), which indicated a complete response to NAC early during treatment and was subsequently confirmed pathologically at the time of surgery

    Macroscopic Optical Imaging Technique for Wide-Field Estimation of Fluorescence Depth in Optically Turbid Media for Application in Brain Tumor Surgical Guidance

    Get PDF
    A diffuse imaging method is presented that enables wide-field estimation of the depth of fluorescent molecular markers in turbid media by quantifying the deformation of the detected fluorescence spectra due to the wavelength-dependent light attenuation by overlying tissue. This is achieved by measuring the ratio of the fluorescence at two wavelengths in combination with normalization techniques based on diffuse reflectance measurements to evaluate tissue attenuation variations for different depths. It is demonstrated that fluorescence topography can be achieved up to a 5 mm depth using a near-infrared dye with millimeter depth accuracy in turbid media having optical properties representative of normal brain tissue. Wide-field depth estimates are made using optical technology integrated onto a commercial surgical microscope, making this approach feasible for real-world applications

    A geometric approach to visualization of variability in functional data

    Get PDF
    We propose a new method for the construction and visualization of boxplot-type displays for functional data. We use a recent functional data analysis framework, based on a representation of functions called square-root slope functions, to decompose observed variation in functional data into three main components: amplitude, phase, and vertical translation. We then construct separate displays for each component, using the geometry and metric of each representation space, based on a novel definition of the median, the two quartiles, and extreme observations. The outlyingness of functional data is a very complex concept. Thus, we propose to identify outliers based on any of the three main components after decomposition. We provide a variety of visualization tools for the proposed boxplot-type displays including surface plots. We evaluate the proposed method using extensive simulations and then focus our attention on three real data applications including exploratory data analysis of sea surface temperature functions, electrocardiogram functions and growth curves

    FlexPass: Symbiosis of Seamless User Authentication Schemes in IoT

    Get PDF
    This paper presents a new user authentication paradigm which is based on a flexible user authentication method, namely FlexPass. FlexPass relies on a single, user-selected secret that can be reflected in both textual and graphical authentication secrets. Such an approach facilitates adaptability in nowadays ubiquitous user interaction contexts within the Internet of Things (IoT), in which end-users authenticate multiple times per day through a variety of interaction device types. We present an initial evaluation of the new authentication method based on an in-lab experiment with 32 participants. Analysis of results reveal that the FlexPass paradigm is memorable and that users like the adaptable perspective of the new approach. Findings are expected to scaffold the design of more user-centric knowledge-based authentication mechanisms within nowadays ubiquitous computation realms

    Cell-type specific RNA-Seq reveals novel roles and regulatory programs for terminally differentiated Dictyostelium cells

    Get PDF
    Abstract Background A major hallmark of multicellular evolution is increasing complexity by the evolution of new specialized cell types. During Dictyostelid evolution novel specialization occurred within taxon group 4. We here aim to retrace the nature and ancestry of the novel “cup” cells by comparing their transcriptome to that of other cell types. Results RNA-Seq was performed on purified mature spore, stalk and cup cells and on vegetative amoebas. Clustering and phylogenetic analyses showed that cup cells were most similar to stalk cells, suggesting that they share a common ancestor. The affinity between cup and stalk cells was also evident from promoter-reporter studies of newly identified cell-type genes, which revealed late expression in cups of many stalk genes. However, GO enrichment analysis reveal the unexpected prominence of GTPase mediated signalling in cup cells, in contrast to enrichment of autophagy and cell wall synthesis related transcripts in stalk cells. Combining the cell type RNA-Seq data with developmental expression profiles revealed complex expression dynamics in each cell type as well as genes exclusively expressed during terminal differentiation. Most notable were nine related hssA-like genes that were highly and exclusively expressed in cup cells. Conclusions This study reveals the unique transcriptomes of the mature cup, stalk and spore cells of D. discoideum and provides insight into the ancestry of cup cells and roles in signalling that were not previously realized. The data presented in this study will serve as an important resource for future studies into the regulation and evolution of cell type specialization
    corecore